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Action-angle variables and

Liouville’s theorem

Canonical transformationo] AR EE= 71 giEA Q] o= 586t BEA|E actiony} an-

gleolgb= T 79 M2 Edoh= ZAoltt o] 49 Hamiltonian &5HS -9~ TS}
Aed = O]E% =71 wi=ofl, 7H& 7= 2] ol A UH—?— sttt o] A FHFRo A= Liou-

ville’s theorem-2 Hamiltonian ¥SFe] T4 o)A FH 01'11]— Liouville’s theorem is crucial
for understanding the fundamental properties of large ensembles of beam particles in
accelerators.

Al 1 @ Canonical Transformation for a Linear Oscil-

lator

An illustrative example of the canonical transformation: a simple harmonic oscillator

e The Hamiltonian for an oscillator with a unit mass:
2

P wix?
H = 3.1
(wp) =L+ (3.1)
e The equations of motion:
) oH . OH
p:—%:ng, .ZC:a—p:p, (32)
e Solution:
x = acos(wot + ¢o) , p = —awp sin(wot + ¢y) , (3.3)

e We would like to find a canonical transformation from the old variables, x, p, to the
new ones, ¢, I, (where ¢ is the new coordinate and I is the new momentum):

x=A(l)cos¢, p=—A()wysing, (3.4)
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2] (3.3)2} H] S S}, a — A( Joll th-SE 22 = constant of motion®] 11, wyt +
o — ¢O1B2, p= Altof| it A3 40|t

To construct the canonical transformation (3.4) we will use the generating function
Fi(z,¢) of the first type.

First, we express p in terms of the old (x) and new (¢) coordinates by eliminating
A(I) from (3.4):

P = —woxtan ¢. (3.5)
2o 4748 Rl ofg nlEAS HBeE, B & 9L 4 Atk drldE 4B

5t glol .

VR

oF
—1> =p = —wpxrtan¢o
x
¢
WQIQ

S tang. (3.6)

Fl(x7¢) =

pdr = —

—

Fi2 oA Az HZ2A- tis 2o, 22 momentume F2 5 At

OF 2 1
S () tan?¢) = — (w22 +p?) (3.7)

_[ = — —
3¢ 2 2(4.)0

By substituting Eq. (3.4) into (3.7):

A(l) = /== (3.8)

The new coordinate in terms of old variables:

¢ = — arctan % : (3.9)

Because the canonical transformation does not depend on time, the new Hamilto-
nian is equal to the old one expressed in new variables.

O
H-gs 2y
o

Comparing Eq. (3.1) with (3.7):
H' = wol . (3.10)
I o]l 2= 7 [ A]] x [AIZH
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e The equations of motion in new variables

. oOH' . OH'
[=-%5=0, é="r=uw. (3.11)
I = const, ¢ = wot + ¢ . (3.12)

Of course, this is the same dynamics as described by the original Eq. (3.3), but it
is simpler because one of the coordinates, I, turns out to be an integral of motion
and the other one, ¢, is a simple linear function of time.

e The (I, ¢) pair is called the action-angle coordinates for this particular case. They
are especially useful for building perturbation theory for more complicated systems
that in the lowest approximation reduce to a linear oscillator.

Al 2 @ Action-Angle Variables in 1D

We can generalize the action-angle variables introduced in the previous section to 1D
periodic (z7} ol Z]of wret Fol 7HS HHES|A HE-2-5) motion in an arbitrary
but constant (A]7Fo] T3] 2]&5}2] e=th= o|oF7]) potential well U(z). U(z) o< 22 Q1
EYSt 27} simple harmonic oscillator o 3.

(a) U (b) p

AN,
22

\
y

2.1 Energy F £ 2% BHigo= 3 3§

e Hamiltonian for this problem (assuming a unit mass):

2

H(z,p) = % FU(2). (3.13)

e Each trajectory in phase space is defined by a constant value of the Hamiltonian,
H(z,p) = E, where E is the energy.

e Both z and p for a given trajectory are periodic functions of time oscillating with

the revolution frequency w that depends on the energy, w(FE).

d:v_

—=p=\2AE-U@) (-m=1) (3.14)
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1 xr2 d / T2 d /
T = 7w :/ _x/ =/ - ; (3.15)
2 n P e 2(E-U@)

where T' = 27 /w is the period, and z; and x5 are the turning points on the orbit.

e Canonical transformation from (z,p) to (Q, E): Fy(z, F)

Oy = VAB—U@) (3.16)
Py, E) = / da/\J2(E — U (@) (3.17)

e This is a time-independent transformation.

OF,

H'(Q,E)=H + 5 =F, (3.18)
e Equations of motion for the new variables:
. OH' . oOH'
e The evolution of the variable @) is simple.
Q=t+t. (3.20)

o BAA: S HIFE =1 YW, Q= 3 F7] T = 21/w(E) B Z715H H+&d], o
F717F E 9] 47t HojH A, olvR] Eof whet Zbzhe] A& o] 7|7 GEtA] A
Hr}.

2.2 Action J & A28 ndgog s AL

0 2o we M2e FEAR 2% (angle) ¢ B HOIA, & 7] Folis RE FHo|
o7 W2 ZEH O Ao E sl Ao|r.

e The new coordinate ¢ is called the angle, and the corresponding generalized mo-
mentum, J, is the action.

e Canonical transformation from (z,p) to (¢, J): Fy(z, J)
e The action is a function of energy, J(E), or, conversely, £ = E(.J).

e The generating function is only slightly modified.
Fy(x,J) = Fy(z, E(J)). (3.21)
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e As the Hamiltonian is time-independent, the new Hamiltonian is
H(¢,J) = E(J), (3.22)

e The equations of motion for the new variables:

. OH dE : OH

e Integrating the equation with ¢ = w(E) gives

6 = w(E)t + ¢y . (3.24)

With this time dependence, one orbital period corresponds to the change of ¢ by
27, as desired. A 9Jof 9J) w(FE)T = 27 o]t}

e Integrating the differential equation for E(J)

o
LB, (3.25)
J(E) = /E | wcg,), (3.26)

where FE,;, is the energy corresponding to the bottom of the potential well U.

NOTES
e Generating function o] Z A g2 = D o= gt 2|2 A= Al
-9_.

e The key features of action-angle coordinates are that the action is a constant of the
motion, and the angle grows linearly in time, with periodic motion corresponding
to a change in phase of 27.

e The rate of change in the phase (¢ = w(F)) is generally different for different trajec-
tories. The simple harmonic oscillator is a notable exception where all trajectories

have the same period (¢ = wy).
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Al 3 @ Hamiltonian Flow in Phase Space and Sym-
plectic Maps

3.1 Hamiltonian %2 7|5}stdQl WA o2 H Y

e A map of the initial domain in the 2n dimensional phase space to a manifold (T}
9FA]) in the same phase space at time t:

¢ = qi(qn, Py to, 1) pi = pi(qy, PYs tos t) - (3.27)

Varying ¢ in these equations moves each point (g;, p;) along its trajectory and the
set of all trajectories starting from the initial domain constitutes a Hamiltonian

flow.

e For a given ¢y and ¢, Eq. (3.27) constitute a canonical transformation from ¢, p?
to q;, p;, which is also called a symplectic transfer map.

Pi

qi

3.2 n=1 ¢ AL g5}, symplectic transfer map ©] canonical

transformation o] §& 54
o WA, t =t thote] ofefo] A2 23t
{a:0} o0 =1, PP} = {000 =0 (3.28)
o {00}, = {0 q} g0 = 02 AlZEol /A glo] P4 AgatA 4.
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e e, 919 Poisson bracket % {q,p}y,e ©] A17H] el WaA] ghche At
ol Zo] By,

d d [ 0q Op dq Op
— 0,0 = — | == =75 2
dt{q’p}q P dt (8(10 op®  OpY 9¢° (3.29)
_9p 0dg 0g 0 dp Op 0dg Og O dp
o090 dt T O op° dt O Op® dt  Op° Oq° dt
v 00H 0y 001 0p 0 0H  0g 00
~0p°9q° Op 9 Op° Dq  Og°Op® Ap  Op® Og° Oq
Applying the chain rules,
d 0Op 0 dq 0 g  Op 0 dq 0
opd  Op° Op + opY Oq’ d¢°  9q° dp + 0q¢° dq’ (3.30)
we obtain p
E{q,p}qo,po =0 (3.31)

B =: Interchange property of partial and ordinary derivatives

Let f = f(q,p,t). The ordinary derivative of f with respect to ¢ is

df of. of. Of
e aqur app+ 5t (3.32)

o (df\  &f . &Pf . &f
9q (%) = 9900”  aqop” T Bq0r (3.33)
d(or\  Pf  Pf . Pf
%<%)‘@mqamf+m@ (3:34)

Therefore,

2053

dq
AZIA, ¢ E p = q ol FHAHS] HE

fu
L
N

3.3 Symplectic maps

Canonical transformation Eq. (3.27) 2 &% symplectic (transfer) map 92 7]|&5}7]

21350 oF2 €] block-diagonal 2n x 2n antisymmetric matrix & £ 9.

J 0 0 0
0 J 0 0
Jon = , (3.36)
0 0 . 0
0 0 0 Jy



The diagonal elements are

0 —1
J2:<1 . > (3.37)

F9]: Wolski oAM= Jo = —Jy = So= O H.
e Notation for 2n variables consistent with the definition of Js,:
Wy © Wop—1 = qr, Wop=0pr, k=12,....n (3.38)
W;: Wy 1=0Q;,, Wyu=PF, i=12....n (3.39)

e The transformation from the old to new variables (2.2) is then replaced by 2n
functions as

W, = Wy(wy,t), i k=1,2,....2n. (3.40)

=, 9191 4.2 ofele} 5714
Qi = Qi(ak,pit) ., Pi=Pilar,pe,t), i=1....n (3.41)
e The requirement that all possible Poisson brackets satisfy Eqs. (2.15)—(2.17) (which,

as we know, is equivalent to the requirement for the transformation to be canonical)
can be concisely written as

M JouMT = Jon, or M* Jou, M = Jo, (3.42)

where M is the Jacobian matrix of the transformation

o,

M;; =
J (9wj

(3.43)

A transformation with Jacobian satisfying Eq. (3.42) is said to be sympletic. The
Jacobian of a canonical transformation is a symplectic matrix.

e Both the matrix and its determinant are referred to as the Jacobian in some liter-
atures.

HZ=: Proof that Jacobian matrix of a canonical transformation
is symplectic (A. Wolski 2 J|-&)

Hamiltonian equations with old and new variables:

oOH . OH
e W= Sj—r, k=1,2,...,2 3.44
k&wk k@Wk ! " ( )

wi:

22



Here,

S, 0 0 0
0 Sy 0 0
S = - _J2n7
0 0 0
0O 0 0 S

Consider an infinitesimal change in the independent variable from tq to tq + 0t:

oH

VVi(to + (St) = W (to) + W (to)(st = wl(lfo) + wz(to)ét = w; + Szk (aw
k

) 5t (3.45)

From the definition of the Jacobian of the transformation from ¢, to ¢+ dt (we note that

: 2 ~

Yo (9wj (9wj 8wk

Or, in the matrix notation

M =1+ SHét (3.47)
To first order in &t
(I +SHG&t)S(I + SHSt)T = (I + SHSt)S(I — HSSt) = S (3.48)
Or, equivalently,
(I + SHt)'S(I + SHSt) = (I — HS6t)S(I + SHSt) = S (3.49)

If we think of expansion of W, about the reference orbit:

OW;(0, to + 0t
Wi(U)j,t0+5t) :WZ(O,to—i‘(st)—'—Z ( 0t )’(U]:Z
J

8wj

My(0)w;  (3.50)

Here, we assume that the reference orbit is transformed to a reference orbit when there
is no constant force term (i.e, linear term in the Hamiltonian), and set W;(0, to + dt) = 0.

NOTES
1 ek, H 7w, o Hjg 22 0 2 ool Qlehl (5, 54 o] dgoletu),

M;;(0) = M;;0] 11 mapping & T3} Zo] 3§ Fe|= BFIT 4= 9ot
Wi(to + 0t) = M;jw; (3.51)

2. 9ref, H 7h w; off Hiet 1, 22h4] = o] FoA uhd Oth order o] A7t
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3. BEef, of 1ol H 7} AlZhe] gt ol&Ado] 1Al t = to + Not = to + At oA

)
[
ol
rm

4. "9FoF o 101]/K1 H 7} piece-wise constant SFCHH, =, At ‘59tof| H, S 7}X| a1, Aty
&<t Hy & 7HA4L, 55
Wilto + Aty + Aty +---) = [(- I+ SHyAL)(I + SHAL)| (3.54)
5. 7]2&A o= o 3,4 of| A& At Fo] BT w22 off o], T1# 2] o higher-
order +=& 5 F1&dfoF OPE]- o & 5™ quadrupole 9] transfer matrix += of
a5t gol Foldit o] A 12A0 R BIINE N FoIA Wi = Myu; 2
@G 5, M, — OW, /0w, & AT Roltk =, BE higher-order G5 1%
Aol

l

()
—Vksin(vVkl) cos(Vkl)

ol

- 1 1
Mij = 5Z-j + SZka]l —
—kl 1

Al 4 A Liouville’s Theorem

e Volume of the old phase space domain:
Vi = / dqdgs . . . dgndpidps . . . dpy
Mo

e Volume of the new phase space domain:

VQ:/ d01dQs . .. dQ,dP,dP, . .. dP, .
My

e It turns out that V5, = V4.

24
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S DAL | (EE o] ol At o SF) & v 2k Apgst

o &
ZdolH, o] AL Hamiltonian ©2 HE] Jacobian matrix & AAISIIAE A&

(3.55

~—

el
T—
P
Ea

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)



e Proof: The ratio of infinitesimal volumes in a transformation of variables is equal to
the absolute value of the determinant of the Jacobian matrix of the transformation.

dQ1dQs . ..dQ,dP,dP; . ..dP,
dq1dqs . . . dgndpydp; . . . dpy,

= |det M| . (3.61)
Since,

det(M Jo, M) = (det M)? det(Jy,) = det(J,) = 1 (3.62)
Therefore, |det(M)| = 1.

e Liouville’s theorem guarantees that the phase space volume occupied initially by a
beam remains the same through its Hamiltonian evolution with time.

H=: Distribution function

e It is a continuous (mathematical) approximation of discrete (real) particle distri-
bution.

e The number of particles found in a differential volume in the neighborhood of a
phase space location z, p at a time ¢:

f(x,p, t)dxd*p (3.63)

e With a smooth phase space distribution, the charge and current distributions as-
sociated with such a distribution are also continuous and smooth.

e The fields derived from the smooth charge/current densities may be termed macro-
scopic. Deviations from these approximate fields (near an individual particle) may
be termed microscopic.

H=: Proof of Liouville’s theorem

e Total time derivative of the distribution function:

daf 0
d]; 8{+X Vi+p-Vpf (3.64)

e From continuity in phase-space:

0:%+V (%f)+ Vp - (Df) (3.65)

e If the forces are derivable from a Hamiltonian, then

i _ o 5 do, Of  dp: 0f
dt dt &vz dt Op;

= —Z(gii gﬁi ) Zf{axl(apz)_ai (gi”_o
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In other words, when no dissipative forces, no particle lost or created, and no small-
impact-parameter binary Coulomb collisions between particles, we have

df
i 0 (3.66)
Incompressibility:
V- (x)+Vp-(p)=0 (3.67)

H=: Comments on Liouville’s theorem

Liouville’s theorem states that the phase space density encountered as one travels
with a particle in a Hamiltonian system is conserved.

— The density of any volume of phase space whose boundary follows the Hamil-
tonian equations is constant.

— The volume occupied by particles in phase space (~emittance) is conserved
(shape may change).

Liouville’s theorem is valid not only for the time-independent Hamiltonian case,
but also for the time-dependent Hamiltonian case.

Liouville’s theorem is valid for both equilibrium and non-equilibrium systems.
Liouville’s theorem is valid for both linear and non-linear systems.

Liouville’s theorem does not imply that the density is uniform throughout phase
space.

Liouville’'s theorem only holds in the limit that the particles are infinitely close
together. Equivalently, Liouville’s theorem does not hold for any ensemble that
consists of a finite number of particles.

Liouville’s theorem holds even in the presence of space-charge and wake-fields, but
not with microscopic binary collisions.

B =: Meaning of equilibrium

Any positive-definite (because it should represent particle counts) distribution func-
tion formed from a set of single-particle constants of the motion {C;} will produce
a valid, exact ‘equilibrium’ solution to the Vlasov equation.

d
CH{CY) =0 (3.69)

e A special case is a stationary (time-independent) equilibrium with 0/9t = 0. Sta-

tionary beam equilibria occur in continuous-focusing systems.
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e In continuous-focusing systems, one may assume the beam is in thermal equilibrium

H) of _
kpT.,| ot

focexp {— 0, (3.69)

where H is a constant of the motion for a time-independent Hamiltonian,
e In non-continuous lattices, projections of the distribution can evolve in ¢ .

e In the periodic focusing system, the particle distribution is non-stationary, however,
when plotted in trace space once per period (i.e., in the Poincare plot), we can treat
the beam in stationary equilibrium.

F(t) = f(t+T) (3.70)

Al 5 Non-conservative Forces in Hamiltonian Dy-

namics

ot the 7] 3]o] holol & &
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