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A1

The basic formulation of mechanics:
Lagrangian and Hamiltonian

equations of motion

Al 1A Newton’s second law

e Notation:

de . dzx ,
— =, — =z
dt ds
e Basic equations of motion:
F=ma
or,
dp

e Simple harmonic oscillator:
i+wiz=0 (1.1)
has straightforward solutions of the form
a cos(wot + ¢)

where a characterizes the amplitude of the motion and ¢ is a phase that describes
the timing.

e (Nonlinear) pendulum equation:

0+ wisinf =0, (1.2)
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where w? = g/I, with [ being the length of the pendulum and g being acceleration
due to gravity.

o HAFOIAT 9] EAL s UAREC R A},

1d, d

éaez—wSaCOSHZO, (1.3)

F=_Lg f = const (1.4)
= 5 cos ) = cons .

is conserved. We call E the energy of the system. Each orbit is characterized by its
own energy.

0 = +wo\/2(E + cosf) (1.5)
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Al 2 d Lagrangian
How does one write equations of motion for more complicated mechanical systems?

e First step: choosing generalized coordinates

41,492, - - -, qn,

which uniquely define a snapshot or configuration of the system at a particular
time. o 7| A n& A|AHEI Q] 2SI

e Each mechanical system possesses a Lagrangian (function), which depends on the
coordinates, velocities (¢1, go, - - -, ¢,), and time t: L(q;, ;,t)

e Action

to
t

1

reaches an extremum along the true trajectory of the system varied with fixed end
points.

e For mechanical systems, the Lagrangian is equal to the difference between the
kinetic and the potential energies. The kinetic energy represents the energy from

the particle motion alone, while the potential energy U defines a force acting on
the particle through F' = —dU/dz.



e For a single pendulum with the angle 6 as a generalized coordinate g:

L(9,0) = %F(ﬁ + mgl cos . (1.7)

e Based on the variational calculus (FHEH):

to
5 [ Lty =0, (1.8)
t1
oL d OL )
o diog i1=1,...,n. (1.9)

H S71A 02 Actiong F|Asks= Ao] Hoh
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to

t1

to X to
:/ L(q; + 0¢;, G; + 6q;, t)dt —/ L(qi, ¢, t)dt

t1

t2 ” OL
/ ( 6qZ 8'-5 )dt
t2 ” oL d oL
/ (8(]@- — an') Sq;dt (1.10)

A71A 0g;(t1) = 6g;(t2) = 0 ©] 2L A} DA M= F2HEE °l8-

e Lagrangian is not unique. Lagrangian does not change by adding any function
g(qi, t), which is

9(qi, t) = ai.t) a_f + Zqi af (1.11)

e NOTES

— We have complete freedom to choose generalized coordinates
— The Lagrangian formalism is closely related to powerful variational principles

— There is a connection between the symmetries of the Lagrangian and the
conservation laws for the system

oL 0 oL
0g; B 04

= conserved



Al 3 A Lagrangian of a Relativistic Particle in an

Electromagnetic Field

For the motion of relativistic charged particles in an electromagnetic field:

L(r,v,t) = —mc*y/1 —v2/c2 +ev - A(r,t) — ed(r, 1) (1.12)

mC2

— _T +ev- A(r,t) —ep(r,t),

where e is the electric charge of the particle, 3 = v/c, and v = (1 — $%)7'/2 is the Lorentz
factor.

e Electric and magnetic fields:

0A
E:—V¢—57 B=VxA

e In a Cartesian coordinate system:
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Al 4 d From Lagrangian to Hamiltonian

The Hamiltonian approach it is simpler to change how a system is characterized in order
to suit our needs, and the quantities which come out of this approach have clearer physical
meanings as well. These advantages are especially useful in accelerator physics.

e First step: define the generalized momenta p;

i(Qe, G, t) = ——— i=1,...,n. 1.13
Pilk; Ge: t) 20, (1.13)
e Second step: express all the variables ¢; in terms of q1, g2, ... qn, p1,p2, ..., pr and ¢

ql:qz(qk,pk,t), Z:L,TL (114)

e Third step: construct the Hamiltonian function

=1



e The equation of motion of the system:

oH . oOH
0g; 7 = Op; .

pi = (1.16)

Here, the variables p; and ¢; are called canonically conjugate pairs of variables.
o =14:
n

OH ) . & 4. OL dgy\  OL
— = — —L| = — — . 1.1
dq; dq; (Zpqu > —1 ( P dq; +aék a%) " 0g; ( 7)

k=1

OH 9L dOL _dp

_ = = — = ) 1.18
e Hamiltonian for the pendulum:
P
H(0,p) = s—5 — wyml® cos (1.19)

2ml

The generalized momentum p corresponding to the angular variable 6 is p = mi26.

Al 5 Hamiltonian of a Charged Particle in an Elec-

tromagnetic Field

e Notation: the canonical conjugate momentum 7 = (m,, 7, 7,)

L
W:a—:m++eA:mvv+eA. (1.20)

ov V1—v?/c?

Note that the conjugate momentum 7 differs from the kinetic momenta ymv =
ymBc of the particle.

e The Hamiltonian is derived as
H=v-w—-1L
=v-m+mc’\/1—v2/c2—ev- A+ e
2
= myv® + L, ep
v
= myc +eg. (1.21)

The Hamiltonian is the sum of the particle energy and the potential energy associ-
ated with the electrostatic potential.



Using

7 =1+7"8%, (1.22)
m—ecA)?
7262 = ( m202 ) Y (123)
we obtain
(m—eA)?
V=1 —3 (1.24)
and
H(r,m,t) = /(mc2)2 + 2(m — eA(r, 1)) + eg(r,1). (1.25)

Therefore, the vector potential is also present in the Hamiltonian.

Al 6 @ The Poisson Bracket

f(qispist) = f(qi(t),pi(t),t) can be considered as a function of time ¢ only.

Derivative with respect to time (convective or Lagrangian derivative): chain rule

ﬂ—ngZ(afq‘ﬁ 8f]5i) : (1.26)

Using Hamilton’s equations of motion

a  of of 0H of 0H
=32 )

dt conv 0q; Op;  Op; O
_of
Poisson bracket:
_ of 99  Of g

gt = EZ: (8%‘ Opi  Op; 86]2‘) 7 (1.28)

Poisson bracket is anti-commutative
{9, fy=—{f.9}- (1.29)
{1} =0. (1.30)

If df /dt = 0, then f is an integral of motion,meaning that its value remains constant
along the orbit. Note that if f does not explicitly depend on time, f = f(q;, p;), it
is an integral of motion if and only if {f, H} = 0.
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e A Hamiltonian that does not depend explicitly on time is an integral of motion,
because the Poisson bracket of H with itself is always equal to zero (dH/dt =
{H,H} =0).

e Each coordinate g and momentum p;, are considered as a function that only de-

pends on itself
g, Opr gy, Opr
0q; Op; g Op; dq; ( )

{9, @} = {pi,pr} =0, {49, pr} = dirc - (1.32)
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