

> 경주양성자-포항방사광-대전중이온 의좋은 ‘가속기 삼형제|

2021년한국형중이온가속기 '라온(RAON)'이완공되면 한국 은 명실상부 가속기 선진국 대열에 합류하게 된다. 이미 세계 에서 3 번째로 완공돼 할약 중인양성자가속기와 4 세대 방사 광가속기에 이어 마지막 퍼즐이 맞췆ㅈㄱㅣ 때문이다 이들 가 속기는 한국을 대표하는'가속기삼형제'로 활약하게 된다.

‘가속기삼형제"를 소개합니다

탄생 순서로 따지면 가속기 삼형제의 맏형은 한국원자력연 구원이 경주에 지은 양성자가속기연구세터의 대용량 서형

양성자가소ㄱㅣㅣㄷㅏ 미국과 일볻에이어서계세 버깨로 2012녀 갈 설비 구축을 완료했다. 2013년부터 시운전을 시작했고, 2014년부터 정상가동했다. 그 뒤추가 연구시설과 관리시설 구축이 이어졌고, 올해 4 월 5 일 최종 준공댔다
둘째는 포항가속기연구소의 4세대방사광가속기다. 양성 자가속기와 마찬가지로 미국과 일본에 이어 세계에서 세번 재로 2015년 완공된 뒤 2016년 시운전을 거쳐 2017년 중순 부터 실전에 투입됐다.
라온은 삼형제 중나이로 따지면막내 격이지만, 작동 원리

가속기심형제"프로필

구분	설비우ㄱㅜㅕㅜㅇ	빌 에너지	가슥대상	닫구 영여	주요왈용
$\begin{aligned} & \text { 앙성자 } \\ & \text { 가석ㄱ } \end{aligned}$	2012년	100 MeV	앙성자	나노미터	$\begin{aligned} & \text { 시싯재 } \\ & \text { 개발등 } \end{aligned}$
$\begin{aligned} & \text { 세대 } \\ & \text { 방사광가속기 } \end{aligned}$	2015년	10GeV	전자	$\underset{\substack{\text { 나나미미터 } \\ \text { 세계 }}}{ }$	분자생물학 연구등
중이은가슥기	2021년	$\begin{gathered} 200 \mathrm{MeV} / \mathrm{u} \\ \text { (우라늄-238 기준) } \end{gathered}$	$\begin{gathered} \text { ㅎㅔㅖ률부터 } \\ \text { 우띾ㄲㅈ지다양함 } \end{gathered}$	$\begin{gathered} \text { 펨토미터 } \\ \text { 세계 } \end{gathered}$	$\begin{aligned} & \text { 혁과ㄱㅏㅏ } \\ & \text { 연구능 } \end{aligned}$

를 놓고 비교하면 "무게감 있는 동상"이라 할수 있다. 양성자 가속기는 가장 가벼운 수소 원자의 핵인양성자를 이용하고 방사광가속기는 양성자보다 훨씬 가벼운 전자를 활용하는 가속기다. 반면라온은 우라늄같은무거운 원자를 이용해만 틍이온을 쓴다. 가속시키는 대상 측면에서보면가장 무게 감이 있는셈이다.
세 가속기는 '노는 물'도조금 다르다. 양성자가속기와 4세 해 방사광가속기가 활약하는 주무대가 나노미터 $(\mathrm{nm} \cdot 1 \mathrm{~nm}$ 10 억 분의 1 m) 단위의 세계라면 중이오가속기느 이보 다 100 만 배 더작은 펨토미티 $(\mathrm{fm} \cdot 1 \mathrm{fm}$ 는 1000 조 분의 1 m) 단위 의 세계를 탐구한다. 세가속기가 함께가동되면 한국은 최쳠 단 기술의 영역인 나노과학과펨토과학 연구에서 앞서갈 수 있는 기반을 마련하게 된다
‘주특기'를 비교하면, 첫째인 양성자가속기는 "미다스의 손이다. 물질의 성질을 변화시키는 능력이 있기 때문이다. 가 령 양성자를 가속해 목표물에 총돌시키면 양성자가 그물질 에들어가면서물질의 성질이변하게 된다. 산소등 여러 원소 로 이뤄진물질의 경우 산소 원자의 핵에 양성자가 충돌해 서 산소 원자가탄소 원자로 바뀔수 있는데, 이럴 경우 전체 울 질의 성질도 변하게 된다. 이런 이유로 양성자가속기는 신소 재개발에 많이 쓰인다.
4세대방사광가속기는 '매의 눈'에 비유할 수 있다. 세포롤 구성하는 단백질처럼 나노미터 단위의 작은 물질의 내부를

6

양성자가속기는 4세대방사광가속기와 함께 '현미경듀오'로 활약할수 있다. 하나의 물질을 4 세대방사광가속기와 양성자가속기를 모두 0 용해서관찰하면 어디에무거운원자들이있고 어디에가벼운 원자들이있는지정확히알수있다

3 차원으로 생생하게 들여다볼수있기 때문이다. 특히 이런나 노미터 세계의 변화 양상을 펨토초(fs•1fs는 1000조 분의 1 초) 단위로 분석할 수 있어 마치 '동영상'처렴 생생한 관찰이 가능 하다. 따라서 분자생물학 연구와 신약 개발 등에 적격이다.

막내라온은다재다능한'멀티플레이어'다. 새로운 원소를 찻는 연구부터 핵과학 연구, 중성자별 내부에서 일어나는현 상을모사하는연구등다양한기초과학 연구에 활용할수 있 고, 신소재와 반도체 개발, 핵폐기물 처분 관련응용과학 연 구에도다방면으로 요긴한역할을한다.

경주 양성자가속기

양성자가속기는 2002년계획이 시작돼2012년설비구축이완료 됐다. 그뒤활용연구시설등을 짓는 과정이 이어져올해 4 월 5 일 최종 준공식을 했지만 연구는 2013년부터꾸준히 진행돼 왔다. 양성자가속기는 수소원자에서전자를 떼어낸뒤핵인양성자를 전자기장으로 가속시키는 장치를말한다. 경주양성자가속기는 양성자를 빛의속도의 약 43% 수준인초속 13 만 $k m$ 까지 가속시 킬수있다.
양성자가속기라고하면 스위스와 프랑스의 국경지대 지하 에설치된 거대강입자가속기 (LHC)를 떠올리는 사람들이 있지 만 방식과 목적에서차이가 있다. LHC는둘레가 27 km 에 이르 는원형가속기로, 서로 반대방향으로양성자를쏴서가속시키 다가 두양성자를 충돌시켠을 때 나타나는 반응을 연구한다. 이때 원자핵을 구성하는 쿼크 등 소립자들이 튀어나오는데, 2012년 이런방식으로 '신의 입자로 불리는 힉스를 처음 발견 핸다. 현재는 우주의 약 23% 를 차지하고 있을 것으로 추정되 는미지의물질인암흑울질의흔적을 찾고있다.
반면 경주 양성자가속기는 길이가 75 m 인 선형가속가 다. 또, 양성자와 양성자를 충돌시키는 방식이 아니라 가속 된양성자를 다양한 종류의 목표물에 총돌시키는 방식을쓴 다. 충돌 에너지가수 TeV (테라전자볼트•1 1 TeV 는 1 조 eV)에 이 르는 LHC에 비하면 경주 양성자가속기는 1 만 분의 1 수준인 100 MeV (메가전자볼트- 1 MeV 는 100 만eV)에불과하다.
하지만 가속시킬수 있는양성자의 수 측면에서는 LHC가 매 우 적은 수준인 반면 양성자가속기는 초당 1 경 개의 양성자를 가속시킬수 있을 만큼 월등히 앞선다. 김귀영양성자가속기연 구센터장은 "특별히 고에너지가 필요 없는 대신 많은 양의 양 성자 공급이 필요한 물질분석 및 물성변화 등의 응용과학과 산업분야연구에서 활용 가치가높다"고말했다.

의료,산어, 응용과학 일푼

현재 양성자가속기는 연간 200 명 이상의 연구자들이 다양한 분야에 활용하고 있다. 김 센터장은 "신소재 개발과의료용 동 위원소개발등다양한연구가이뤄지고 있다"고밝혔다.
의료용 동위원소의 경우, 현재 질병을 진단하고 치료하는 데 필요한 구리(Cu)와스트론튬(Sr), 악티늄(Ac)의동위원소 를 생산하기위한 연구를 하고 있다. 구리의 원자번호는 29 번 으로 양성자와 중성자 수가각각 29 개다. 따라서양성자와중 성자 수를 더한 질량수는 58 이다. 하지만 양성자가속기를 이 용하면 질량수가 67 인 구리의 동위원소를 만들수 있다. 중섬 자 9 개가 더해지는 것이다. 김 센터장은 "질량수가 67인굴ㄹ 는암 치료에쓰이며, 질량수가 82 인스트론튬은 심근경색 진 단에 활용되는 동위윈소"라고 설명했다.
양성자 빔을 이용해 다이아몬드의발색을 바꾼 연구 사례 도 있다. 양성자가속기연구센터 연구진은 수 년전 저렴한다 이아몬드에 양성자를 쪼여 양성자의 양에 따라 다이아ㅁㅗㅗㄷㅡ 가노란색에서초록새, 그리고 파란색으로 변하는 현상을 실 험으로확인한 바있다.
원리는 이렇다. 양성자와 충돌한 탄소 원자의 일부가 자리 를 이탈하면서 빈자리격자 결함가 생기고, 이 공간이 빛의

일부파장을 흡수한다 특히 빨가색 파장을 잘 흡수하기 때뭄 에초록색이나 파란색으로보이게 된다.
반도체 안정성을 확인하는 데에도 양성자가속기가 요긴하 게쓰인다. 현재양성자가속기연구센터는 국내 반도체기업들 과공동으로각 기업에서 개발한반도체가 우주에서 날아오는 양성자와 중성자 등 이른바 우주방사선(cosmic ray)에 영향 을 받아오류를 일으킬 확률 등을 검사하는 실험을 진행하고 ㅆㅆㄴㄷㅏ.
김 세터장으 "박도체 회사이 고객인 자동차회사나 빅데이 터 기업등은 반도체의 신뢰도를 확인한자료를 요구하고 있어 반도체회사 입장에서는 꼭 필요한작업"이라고설명했다.

‘현미경듀오’ㅗㅗ활약가능

양성자가속기는 ‘중성자 현미경’으로도 활용할 수 있다. 양성 자를 물질의 원자핵에 충돌시키면 원자핵에서 중성자들이 방출되는데. 이 중성자를 다른 물질에 쪼이면 마치현미경처 럼 물질의구조를 들여다보는 데 활용할수 있다. 김센터장은 "중성자가 물질을 구성하는 원자핵에 맞고경로가 틀어진것 이나 에너지가 변한 정도를 확인해서 물질을 구성하는 원자 의 종류와 배열방식에 대한정보를 얻을 수 있다"고설명했다.

덕분에양성자가속기는 4세대방사광가속기와함께 '현미

경주앙성자가솟기의 선졍가속징치.원통형 탱크내부에설치ㅊㅚㅚㄴ금속관 사이로전기장의 함을 이용해애야ㅅㅓㅓ지가가소ㅅㅗㅕ격을 있지안고빌랑잉까지 전다닥도장하릳다.

표항가속기연구스의전경 ㅈㅈ붕에 PPAL-XFELL이라고 피시된검물에 4 세대방사광가솟기가든ㅇㅇ잉다.
 활용되고인다

경듀오'로 활약할 수 있다. 4세대 방사광가속기역시 나노미 터 단위의 미시 세계를 들여다보는 현미경으로 쓰이는데, 방 사광과 물질 내부 전자의 반응을 통해 구조를 보는 원리로양 성자가속기와는 다르다. 서로 장점이 다른 셈이다.
4세대방사광가속기는 물질 내에 있는 무거운 원자들을 잘 찾는 반면. 양성자가속기는 수소처럼 가벼운 원자를 잘 찾는 다. 김 센터장은 "하나의 물질을 4세대 방사광가속기와 양성 자가속기를 모두 이용해서관찰하면 어디에 무거운 원자들이 있고 어디에 가벼운 원자들이 있는지정확히 알 수 있을 것"이 라고말했다.

포항4세대방사광가속기

4세대 방사광가속기는 2011년 건설을 시작해 2015년 완공됐 다. 시운전을 거쳐 2017년중순부터본격적인연구에 투입됐다. 4세대방사광가속기는 가속기삼형제 중에서 가장 가벼운 재료인 전자를 활용한다. 전자기장을 이용해서 전자를 빛의 속도에 가깝게 가속시킨 뒤 전자가 휘어질 때 방출되는 방사 광(X선)을 실험 대상에 쪼이는 방식이다. 가속기의 길이는 삼 형제 중에서가장긴 1.1 km 다.
4세대 방사광가속기가만드는 방사광은 파장이 0.1~6nm 에 이를 정도로 매우 짧다. 그래서 생물체를 구성하는 단백질 등 나노미터 수준의 물질을 분석할 수 있다. 일종의 'X선 현미 경인 셈이다. 강태희포항가속기연구소 수석연구원은 "병원 에서 쓰는 X 선 촬영과 유사한 파장의 빛을 쓰지만, 빛의 세기 가다르다"며 "X선 촬영은 세기가 약하지만 가속기는 빛을 강 하게쪼여서 물질내부를볼수있다"고말했다.

가동하자마자 사이언스에논문게재

4세대방사광가속기는 본격가동을 시작하자마자 세계적인 성 능을인정받았다. 가동 0 후첫 연구자가된 앤더스 닐슨 스예덴 스톡홀름대물리학과 교수팀이 4세대 방사광가속기를 이용한 실험 결과를사이언스지난해 12월 22 일자에 게재한 것이다. 연구팀은 물 분자 구조의 변화를 연구했다. 물은 4도에서 가장 밀도가큰 상태가되는데, 이 때문에 추운 겨울에도 강물

위는 얼어붙지만강바닥은 얼어붙지 않아물고기들이살수 있 다. 그간 물이 이런 특성을 갖는 원리에 대해서는 다양한 이론 적 가설만 존재했는데, 닐슨 교수팀이 펨토초 단위로 변하는 물 분자의 구조를 4 세 대 방사광가속기로 관찰하면서 이유를 확인하는 데 성공했다.
연구팀은물을과냉각시킨뒤 10 um (마이크로미터•1um는 100 만 분의 1 m) 크기의 물방울을 만들어 4세대 방사광가속 기로X선을 쪼이면서물이 얼음으로 변하는 과정에서 나타나 는변화를 펨토초 단위로 분석했다.

분석 결과 연구팀은 가볍고 무거운두 가지 구조의물 분자 가동시에 존재하며, 두상태가 서로 바께는 현상이 나타난다 는 사실을 확인했다. 여러 가설 중 두 구조의 물 분자가 공존 하면서 4 도 0 하에서는 가벼운 구조의물 분자가늘어난다는 'LLCP(Liquid-Liquid Critical Point)' 모델을 실험으로 입증 한것이다.
강수석연구원은 "닐슨교수팀은 미국과일본에 있는 4세다 방사광가속기블 모두 사용했지만 포항의 4세대 방사광가속 기로 실험한 뒤원하는 결과를 얻는 데 성공했다"고말했다. 그

만큼포항 4 세대방사광가속기의 성능이뛰어나다는 뜻이다. 4세대 방사광가속기는 물질 내부를 분석하는 데 특화된 장비다. 물의분자 구조 뿐 아니라 생물학, 재료공학. 신약개 발 등 다양한 분야의 연구자들이 현재 포항 4 세대 방사광가 속기를 이용해 연구하고 있다. 특히 마국과 일본의 세대방 사광가속기를 이용해본 연구자들은 하나같이포항 4세대 방 사광가속기의 성능을칭찬한다.
4세대방사광가속기와양성자가속기. 그리고 중이온가속 기는 연구에서 시너지를 낸다는 측면에서도 중요하지만. 가 속기 건설에 필요한 첨단 기술을 국산화하고, 다양한 분야에 관련 기술을 확산시킬 수 있다는 점에서도 중요하다. 가속시 키는 입자는 다르더라도 가속기 구축에 필요한 핵심 기술들 은 기본적으로유사하기 때문이다.
강 수석연구원은 "가속기를 건설하기 위해서는 토목과 건 축, 제어, 진공, 전자등 여러 분야에서 고도의 첨단 기술이필 요하다"며 "양성자가속기와 4세대 방사광가속기를 구축하 면서 터득한 기술적인 노하우를 중이온가속기 라온과 공유 하면서도움을 주고있다"고말했다. 린

세대방사굑가속기의 서형가슥기티널낸부에실치된 가속장치전자충에서나온 전자을블잉이속도로가속시켜
 길이 780 의잉치다.

