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For almost 60 years, the well-known Courant-Snyder (CS) theory has been employed as the stan-

dard method to describe the uncoupled dynamics of charged particle beams in electromagnetic

focusing lattices. Meanwhile, the generalization of the CS theory to coupled dynamics with two or

more degrees of freedom has been attempted in numerous directions. The parametrization method

developed by Qin and Davidson is particularly noteworthy, because their method enables the treat-

ment of complicated coupled beam dynamics using a remarkably similar mathematical structure to

that of the original CS theory. In this paper, we revisit the Qin-Davidson parametrization method

and extend it to include beam centroid motions. The linear terms in the quadratic Hamiltonian

for the coupled dynamics are handled by introducing a special time-dependent canonical transfor-

mation. In this manner, we show that the centroid dynamics is decoupled from the envelope

dynamics, even for the cases of coupled lattice, and all formulations of the Qin-Davidson method

can be applied in a straightforward manner. Published by AIP Publishing.
https://doi.org/10.1063/1.5018426

I. INTRODUCTION

Although there is continued interest in producing an ele-

gant description of coupled linear beam dynamics (see, for

example, Refs. 1–4), no single method is yet in general use

among the beam physics community in the same way as the

well-known Courant-Snyder (CS) theory is for uncoupled lin-

ear systems.5 Based on a time-dependent canonical transfor-

mation, Qin and Davidson proposed a parametrization

method that extends the original CS theory for one degree of

freedom to higher dimensions and involves remarkably simi-

lar mathematical expressions and physical meanings.6,7 Their

parametrization method has been applied to general linear

focusing lattices composed of quadrupole, skew-quadrupole,

and solenoidal magnets, including the effects of energy varia-

tions.8,9 Furthermore, the Kapchinskij-Vladimirskij (KV)

distribution10 has been generalized to coupled transverse

dynamics, based on the generalized CS invariant identified

through the Qin-Davidson parametrization.11–13

In both the original CS theory and the generalized CS

theory introduced by Qin and Davidson, it is assumed that

any centroid offset from the reference orbit is negligible, or

the coordinates are redefined with respect to the offset cen-

troid.14 Therefore, most beam dynamics studies have only

considered the envelope dynamics. However, in order to

design certain sophisticated beam manipulation devices,

such as the oscillating wobbler15,16 and injection/extraction

devices,14,17 a precise description of the beam centroid

dynamics is important. Moreover, for the analysis of the cen-

troid oscillations resulting from the imperfections in bending

magnets17 and certain beam instabilities (e.g., two-stream

electron cloud instability and beam-beam interactions),15,16

effective physical models of the centroid motions are

required.

In uncoupled lattice systems, it is straightforward to

show that the envelope dynamics and centroid dynamics are

decoupled when the image charge effects are negligible.15,17

To the authors’ knowledge, there has been little effort to

incorporate beam centroid motions into general coupled

beam dynamics. On the other hand, from the viewpoint of

wave packet motions, the centroid dynamics have been

investigated for quantum-mechanical systems by introducing

time-dependent linear terms in quadratic Hamiltonians.18,19

In Refs. 18 and 19, it was found that the centroid motion of

any wave packet becomes decoupled from that of any

moments relative to the centroid, regardless of what time

dependence is present in the quadratic Hamiltonian.

Hence, in this paper we revisit the Qin-Davidson param-

etrization method and extend it to include the beam centroid

motions. In Secs. II and III, the linear terms in the quadratic

Hamiltonian for the coupled beam dynamics are introduced

and treated by means of a special time-dependent canonical

transformation. The generalized CS theory is reviewed in

Sec. IV, together with the redefinition of the CS invariant in

the presence of a centroid motion. In Sec. V, we derive the

governing equations for the beam centroid evolutions in

response to coupled lattices and time-dependent driving

forces. Our conclusions and directions for future work are

summarized in Sec. VI.

II. QUADRATIC HAMILTONIAN WITH LINEAR TERMS

As a general remark, the effects of the linear terms in

quadratic Hamiltonians have not been fully explored in lin-

ear beam dynamics,15 in particular for coupled latticea)Electronic mail: mchung@unist.ac.kr
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systems. To investigate these effects systematically, let us

consider a time-dependent quadratic Hamiltonian in a gen-

eral linear focusing lattice with n degrees of freedom

H ¼ 1

2
zTAðsÞzþ fðsÞTzþ gðsÞ: (1)

Here, z¼ (x1,…,xn, p1,…,pn)T denotes the canonical coordi-

nates; s is the path length, which plays the role of a time-like

variable; and A(s) is a 2n� 2n time-dependent symmetric

matrix. We also note that f(s)¼ (f1,…,f2n)T is a 2n� 1 time-

dependent column vector, and the term f(s)Tz represents

terms that are linear in positions and momenta. For example,

a term that is linear in position appears in the Hamiltonian

when there is a spatially uniform driving force, such as a uni-

form electric force.19 The superscript “T” denotes the trans-

pose operation of a matrix. The canonical momenta are

normalized by a fixed reference momentum p0¼ c0mbb0c,

where mb is the rest mass of a beam particle, c is the speed of

light in vacuo, and b0 and c0 ¼ ð1� b2
0Þ
�1=2

are the relativis-

tic factors.

The Hamiltonian equation of motion for z is given by9,20

dz

ds
¼ JrH; (2)

where J is the 2n� 2n unit symplectic matrix

J ¼ 0 I
�I 0

� �
(3)

and I is the n� n unit matrix. Making use of index notation,

we obtain that

z0i ¼ Jij
@H

@zj
¼ Jij

@

@zj

1

2
zlAlkzk þ fkzk

� �

¼ Jij
1

2
dljAlkzk þ

1

2
zlAlkdkj

� �
þ Jijfkdkj

¼ 1

2
Jij Ajk þ Akjð Þzk þ Jijfj

¼ JijAjkzk þ Jijfj: (4)

Here, we use the fact that the matrix A is symmetric, that is,

Ajk¼Akj. The prime denotes a derivative with respect to s. If

we rewrite Eq. (4) in matrix notation, we obtain the

expression

z0 ¼ JAzþ Jf: (5)

We note that the time-dependent function g(s) does not

appear in Eqs. (4) and (5). The Hamiltonian equations of

motion are not affected by the addition of an arbitrary time-

dependent function g(s) in the Hamiltonian, and thus, we set

g(s)¼ 0 for the remainder of this discussion.21

For the linear coupled dynamics of a charged particle

relative to a reference orbit, the matrix A can be expressed in

its most general form as

AðsÞ ¼
jðsÞ RðsÞ

RðsÞT m�1ðsÞ

" #
; (6)

where j(s), R(s), and m�1(s) are time-dependent n� n matri-

ces. The matrices j(s) and m�1(s) are also symmetric. The

Hamiltonian equations of motion can then be expressed as

x0 ¼ m�1pþ RTxþ fp; (7)

p0 ¼ �jx� Rp� fx: (8)

Here, x ¼ ðx1;…; xnÞT ; p ¼ ðp1;…; pnÞT ; fx ¼ ðf1;…; fnÞT ,

and fp ¼ ðfnþ1;…; f2nÞT are n� 1 column vectors.

There are several cases in practical accelerators in which

the Hamiltonian describing the charged particle motion con-

tains linear terms in the canonical coordinates.

A. Wobbler fields

The wobbler is a set of electrically (or magnetically)

biased plates driven by an RF source.15 The wobbler can

actively control the centroid dynamics by means of oscillat-

ing deflecting forces, which can be included in the

Hamiltonian as linear terms. In ion-beam-driven high energy

density physics and heavy ion fusion, the wobbler system

has been considered as a possible beam smoothing technique

to achieve a uniform illumination on a target.16 In certain

proton and carbon therapy facilities, wobbler systems have

been employed to produce a desired dose distribution on

patients.22

B. Dispersion

Regarding particle motion in a dipole magnet, a particle

with the reference momentum will follow the desired refer-

ence orbit.4 When the particle has a non-zero energy devia-

tion d, it will deviate from the reference orbit. If there is

no transverse-longitudinal coupling element (e.g., TM110

deflecting cavity), then the energy deviation can be treated

independently of the transverse motion and gives rise to a

term linearly proportional to the transverse coordinate in the

Hamiltonian. This linear term produces a transverse deflect-

ing force in the equation of motion, which is proportional to

the energy deviation d.

C. Acceleration

The Hamiltonian of a particle in an RF cavity is often

obtained by averaging the Hamiltonian over the cavity

length.4 The resulting averaged Hamiltonian contains a term

that is linearly proportional to the longitudinal coordinate.

This linear term represents acceleration, where the energy

gain is proportional to the cavity voltage and also depends

on the RF phase.4 In the equation of motion, the resulting

force term becomes spatially uniform. If the RF phase is set

in such a way that the reference particle passes the cavity at

a zero-crossing, then there will be no acceleration.

D. Perturbation

Normally, nonlinear perturbations are assumed to be

very small, and so, we can insert the unperturbed solution x0

and p0 into the expression for a nonlinear perturbation, mak-

ing it a time-dependent driving term.23 Indeed, any driving

force term in the equation of motion, which is independent
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of x and p, can be treated using linear terms in the

Hamiltonian. Often, such perturbations arise either externally

from the errors in magnetic field strengths and alignments or

internally from the nonlinear space-charge forces.

III. TIME-DEPENDENT CANONICAL
TRANSFORMATION

We introduce a time-dependent canonical trans-

formation8,9,21,24

�z ¼ SðsÞðz� rÞ; (9)

such that in the new coordinates �z, the Hamiltonian (1) may

be transformed into

�H ¼ 1

2
�zT �AðsÞ�z; (10)

where �AðsÞ is a targeted symmetric matrix. Here, r is a real

column vector. Because S(s) is a symplectic matrix, it is

required that

SJST ¼ J: (11)

Similar to Eq. (5), the Hamiltonian equation of motion for �z
is given by

�z0 ¼ J �AðsÞ�z: (12)

At the same time, �z0 can be obtained by taking a direct time-

derivative of Eq. (9), which yields that

�z0 ¼ S0ðz� rÞ þ Sðz0 � r0Þ: (13)

By equating Eqs. (12) and (13), we obtain that

J �ASz� J �ASr ¼ S0z� S0rþ Sz0 � Sr0

¼ S0z� S0rþ SðJAzþ JfÞ � Sr0: (14)

Equation (14) should be valid for any z. Therefore, it is

required that

S0 ¼ J �AS� SJA: (15)

Meanwhile, the remaining terms in Eq. (14) can be expressed

as

�J �ASr ¼ �S0rþ SJf � Sr0

¼ �ðJ �AS� SJAÞrþ SJf � Sr0: (16)

Because a symplectic matrix S must have an inverse matrix

S�1, Eq. (16) can be reduced to

r0 ¼ JArþ Jf: (17)

We note that the vector r, which removes the linear terms in

the original Hamiltonian, satisfies the same equation of

motion for a single charged particle [see Eq. (5)].

In addition, one can check that the linear transformation

�z ¼ SðsÞðz� rÞ is canonical when the matrix S is symplectic

by evaluating the square matrix Poisson bracket20,21

�z; �z½ �z ¼
@�z

@z

� �T

J
@�z

@z

� �
¼ STJS

¼ J: (18)

Here, the symplectic condition STJS¼ J is equivalent to

Eq. (11).

IV. GENERALIZED COURANT-SNYDER THEORY

A. Envelope matrix

As a first step, we now apply the coordinate transforma-

tion introduced in Sec. III, �z ¼ SðsÞðz� rÞ, such that in the

new coordinate system the Hamiltonian takes the following

form:8,9

�H ¼ 1

2
�zT �AðsÞ�z; �AðsÞ ¼

lðsÞ 0

0 lðsÞ

" #
; (19)

where l(s) is an unknown n� n symmetric matrix to be

determined together with the symplectic matrix S(s).

Because both A(s) and �AðsÞ are given as 2� 2 block matri-

ces, we also let

S ¼
S1 S2

S3 S4

" #
: (20)

We now can split the Eq. (15) into four matrix differential

equations

S01 ¼ lS3 � S1RT þ S2j; (21)

S02 ¼ lS4 � S1m�1 þ S2R; (22)

S03 ¼ �lS1 � S3RT þ S4j; (23)

S04 ¼ �lS2 � S3m�1 þ S4R: (24)

From the symplectic condition SJST¼ J, we have three more

constraints

S1ST
2 � S2ST

1 ¼ 0; (25)

S3ST
4 � S4ST

3 ¼ 0; (26)

S1ST
4 � S2ST

3 ¼ I: (27)

In the four matrix differential equations (21)–(24), there are

five n� n matrices to be determined. Therefore, this is an

overdetermined system. Among the infinite ways to remove

the redundant freedom, we choose S2 � 0, following the

notational convention used in the original CS theory.

Furthermore, we define W ¼ ST
4 , in order to clearly indicate

that the physical meaning of ST
4 will turn out to be the matrix

version of the beam envelope. From the symplectic condition

S1W¼ I, we obtain that S1¼W�1. Then, the matrix differen-

tial equations (21)–(24) can be expressed as

W�1ð Þ0¼ lS3 �W�1RT ; (28)

0 ¼ lWT �W�1m�1; (29)
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S03 ¼ �lW�1 � S3RT þWTj; (30)

WTð Þ0¼ �S3m�1 þWTR: (31)

From Eq. (29), we obtain that

l ¼ WTmWð Þ�1
: (32)

After defining V ¼ �ST
3 , we can express Eqs. (30) and (31) as

W0 ¼ m�1V þ RTW; (33)

V0 ¼ �jW � RV þ WTmWWTð Þ�1
; (34)

where the variable V can be considered to be the matrix asso-

ciated with the envelope momentum. Unlike in the previous

generalized CS theory in Refs. 8 and 9, we express the

matrix envelope equation in terms of two first-order equa-

tions. In this manner, we observe that Eqs. (33) and (34)

have a similar Hamiltonian structure to the single particle

equations of motion,25 except for the term (WTmWWT)�1

[see Eqs. (7) and (8) for comparison].

So far, we have not explicitly imposed the symplectic

condition in Eq. (26), which can be expressed as

VTW �WTV ¼ 0: (35)

By the basic identity for the derivative of an inverse dðW�1Þ=
ds ¼ �W�1ðdW=dsÞW�1, it is straightforward to show that

Eq. (28) is indeed equivalent to Eq. (35). This condition is

trivial in the original CS theory, where V and W are scalar

and commutative. On the other hand, in the generalized CS

theory particular initial conditions for V and W are required

when solving the matrix envelope Eqs. (33) and (34) in order

to ensure that (VTW � WTV)¼ 0 for all s. By taking

½Eq: ð33Þ�TV � VT ½Eq: ð33Þ� � ½Eq: ð34Þ�TW þWT ½Eq: ð34Þ�,
it can be shown that

VTW �WTVð Þ0¼ 0: (36)

Therefore, if we set the initial values for W and V at s¼ 0 in

such a way that (VTW � WTV)0¼ 0, then the symplectic con-

dition is satisfied for all s> 0, and it is not necessary to addi-

tionally solve Eq. (28). Except for this symplectic condition,

the initial conditions for W and V can be arbitrary. Once W
and V are solved from Eqs. (33) and (34) with an appropriate

initial condition satisfying Eq. (35), we can determine the

symplectic matrix S(s) and its inverse in the following forms:

SðsÞ ¼ W�1 0

�VT WT

� �
; (37)

S�1ðsÞ ¼ W 0

V W�T

� �
: (38)

In calculating S�1 in Eq. (38), we have used the symplectic

condition (VTW � WTV)¼ 0.

B. Phase advance matrix

The second step is to apply another canonical transfor-

mation ��z ¼ PðsÞ�z to transform �H into a vanishing

Hamiltonian, that is, ��H ¼ 0 for all s. Equation (15) can be

expressed as

P0 ¼ J ��AP� PJ �A ¼ P
0 �l
l 0

� �
: (39)

Following the same procedure as in the first step, the differ-

ential equation for P is split into four matrix differential

equations

P01 ¼ P2l; (40)

P02 ¼ �P1l; (41)

P03 ¼ P4l; (42)

P04 ¼ �P3l: (43)

Because Eqs. (40) and (41) have the same form as Eqs. (42)

and (43), we can set P4¼P1 and P3¼ –P2. Of course, there

are many other possible choices, such as P3¼P1 and

P4¼P2. However, none of these are consistent with the sym-

plectic condition PJPT¼ J except for the solutions with

P4¼P1 and P3¼ –P2. Then, the symplectic condition can be

expressed as

P1PT
2 � P2PT

1 ¼ 0; (44)

P1PT
1 þ P2PT

2 ¼ I: (45)

We should solve Eqs. (40) and (41) together with the sym-

plectic conditions (44) and (45). By taking ½Eq: ð40Þ�PT
2

�½Eq: ð41Þ�PT
1 � P2½Eq: ð40Þ�T þ P1½Eq: ð41Þ�T , we note

that

P1PT
2 � P2PT

1

� �0¼ 0: (46)

Furthermore, by taking ½Eq: ð40Þ�PT
1 þ ½Eq: ð41Þ�PT

2

þP1½Eq: ð40Þ�T þP2½Eq: ð41Þ�T , we note that

P1PT
1 þ P2PT

2

� �0¼ 0: (47)

Therefore, if we set the initial values for P1 and P2 at s¼ 0

in such a way that ðP1PT
2 � P2PT

1 Þ0 ¼ 0 and ðP1PT
1 þ P2PT

2 Þ0
¼ I, then the symplectic conditions are satisfied for all s> 0.

The symplectic conditions (44) and (45) are also equivalent

to

PPT ¼ I 0

0 I

� �
; and detðPÞ ¼ 1; (48)

which indicates that P is not only a symplectic matrix but

also a rotation matrix. Therefore, P corresponds to a sym-

plectic rotation in 2n-dimensional phase space. Based on the

analogy with the 2D rotation matrix, we rename P1¼Co and

P2¼�Si. Once Co(s) and Si(s) are solved from Eqs. (40) and

(41) with appropriate initial conditions satisfying Eqs. (44)

and (45), we can determine the symplectic rotation matrix

P(s) and its inverse in the following forms:

P ¼ Co �Si

Si Co

� �
; (49)
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P�1 ¼ PT ¼
CT

o ST
i

�ST
i CT

o

" #
: (50)

Here, Co and Si satisfy

C0o ¼ �Si WTmWð Þ�1
; (51)

S0i ¼ þCo WTmWð Þ�1
; (52)

SiC
T
o ¼ CoST

i ; (53)

SiS
T
i þ CoCT

o ¼ I; (54)

where the term l¼ (WTmW)�1 represents the phase advance

rate.

C. Transfer matrix and Courant-Snyder invariant

By combining the two symplectic transformations from

the first and second steps, we obtain

��z ¼ PðsÞSðsÞðz� rÞ: (55)

Because ��H ¼ 0, the dynamics of ��z is trivial, that is,
��z ¼ ��z0 ¼ const. From ��z ¼ PðsÞSðsÞðz� rÞ and ��z0 ¼ P0S0

ðz0 � r0Þ, we have a linear map

z ¼ S�1P�1P0S0ðz0 � r0Þ þ r; (56)

where subscript “0” denotes values at s¼ 0. Because P is a

symplectic rotation matrix, P�1¼PT and P0 can be taken to

be a unit matrix without loss of generality. The transfer

matrix M is defined by

MðsÞ ¼ S�1PTS0 ¼
W 0

V W�T

" #
CT

o ST
i

�ST
i CT

o

" #
W�1 0

�VT WT

" #
0

:

(57)

Similar to the original CS theory, the linear motion with

respect to centroid becomes a time-dependent rotation after

the normalization of the phase-space coordinates.26 The first

matrix from the left in M(s) is a back-transformation to the

original coordinate system.9

Because ��z is a constant column vector, we can construct

an invariant of the dynamics that is quadratic in the phase-

space coordinates by introducing a constant 2n� 2n
positive-definite matrix n

In ¼ ��zTn��z ¼ z� rð ÞTSTPTnPS z� rð Þ: (58)

The quantity In is the generalized version of the Courant-

Snyder invariant, which can be defined even in the presence

of a centroid motion. The matrix n acquires a meaning asso-

ciated with emittance when the beam distribution is defined

in terms of the generalized CS invariant In.13

V. MOMENT EQUATIONS FOR THE CENTROID

In principle, the vector r can evolve according to Eq.

(17) with an arbitrary choice of initial conditions r0 at s¼ 0.

However, in this case the physical interpretation of the

second moments of the beam distribution in terms of the CS

invariant In becomes non-trivial. To examine the physical

meaning of the vector r, we consider the following form of

the beam distribution function:

fbðzÞ / exp �In=2
� 	

; (59)

which is a solution of the Vlasov equation (i.e., dfb/ds¼ 0,

because In is a constant of motion). We note that the contours

of the phase-space density are determined by a single invari-

ant In, which is the usual assumption in beam physics. This

beam distribution can be characterized by a multivariate

Gaussian distribution

fbðzÞ ¼
1

ð2pÞn
ffiffiffiffiffiffi
jRj

p exp � 1

2
z� hzið ÞTR�1 z� hzið Þ

� �
; (60)

where

R ¼ h z� hzið Þ z� hzið ÞTi ¼ hzzTi � hzihziT (61)

is a covariant matrix, and h� � �i denotes the statistical average

over the distribution. Then, we can set

In ¼ z� hzið ÞTR�1 z� hzið Þ: (62)

By comparing Eqs. (58) and (62), we readily obtain that

STPTnPS ¼ R�1; (63)

r ¼ hzi: (64)

The vector r acquires a clear physical meaning when it is set

to be the centroid of the beam. Then, from Eq. (17) the equa-

tion describing the evolution of the beam centroid can be

expressed as

hzi0 ¼ JAhzi þ Jf: (65)

The above equation can be derived more rigorously by

using the statistically-averaged rate equations. The statisti-

cal average of a phase function v(x, p, s) over the 2n-

dimensional phase space (x, p) is denoted by hviðsÞ and is

defined by27

hvi ¼
ð

dxdpvfb: (66)

Here, the beam distribution function fb(x, p, s) is normalized

as 1 ¼
Ð

dxdpfb and evolves according to the Vlasov

equation27

@fb

@s
þ x0 � rxfb þ p0 � rpfb ¼ 0: (67)

For notational simplicity, we introduce the spatial gradient

rx ¼ ð@=@x1;…; @=@xnÞT and momentum gradient rp

¼ ð@=@p1;…; @=@pnÞT and assume that the dot product of

two column vectors a and b is equivalent to the matrix

multiplication of the row vector representation of a and the

column vector representation of b, that is, a � b ¼ aTb.28

From the definition of the statistical average in Eq. (66), it

follows that
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d

ds
hvi ¼

ð
dxdp

@v
@s

fb þ
ð

dxdpv
@fb

@s

¼ @v
@s

� �
þ
ð

dxdpv
@fb

@s
: (68)

After multiplying the Vlasov equation (67) by v and operat-

ing with
Ð

dxdp, we obtain that

d

ds
hvi� @v

@s

� �
þ
ð

dpdxðvx0Þ �rxfbþ
ð

dxdpðvp0Þ �rpfb¼ 0:

(69)

By applying integration by parts with respect to x with the

appropriate boundary conditions for fb at the beam bound-

ary,27 the third term in Eq. (69) can be expressed asð
dpdxðvx0Þ � rxfb ¼ �

ð
dpdxfbrx � ðvx0Þ

¼ �
ð

dpdxfbx0 � rxv

�
ð

dpdxfbvrx � m�1pþ RTxþ fp

� �
¼ �hx0 � rxvi � hvTrðRTÞi: (70)

Similarly, the fourth term in Eq. (69) can be expressed asð
dxdpðvp0Þ � rpfb ¼ �

ð
dxdpfbrp � ðvp0Þ

¼ �
ð

dxdpfbp0 � rpv

�
ð

dxdpfbvrp � �jx� Rp� fxð Þ

¼ �hp0 � rpvi þ hvTrðRÞi: (71)

Substituting Eqs. (70) and (71) into Eq. (69) then gives the

general rate equation for the coupled lattice systems

d

ds
hvi ¼

�
@v
@s
þ m�1pþ RTxþ fp

� �
� rxv

þ �jx� Rp� fxð Þ � rpv

�
: (72)

Here, the terms involving the trace of the matrix R are can-

celled out, that is, �hvTrðRTÞi þ hvTrðRÞi ¼ 0. Substituting

v¼ x1,…,xn into Eq. (72) gives us that

d

ds
hxi ¼ m�1hpi þ RThxi þ fp: (73)

Similarly, for v¼ p1,…,pn, we obtain from Eq. (72) that

d

ds
hpi ¼ �jhxi � Rhpi � fx: (74)

Equations (73) and (74) describe the evolution of the beam

centroid in phase space hzi ¼ ðhxiT ; hpiTÞT in response to

the coupled lattices and uniform driving forces in the phase

space. We also note that Eqs. (73) and (74) can be combined

to give

hzi0 ¼ JAhzi þ Jf; (75)

which is indeed the same as Eq. (65). Therefore, the centroid

motion follows exactly the same equations of motion as the

individual beam particle in phase space, even for general

coupled lattices.

VI. CONCLUSIONS

For charged particle beam dynamics in uncoupled latti-

ces, a fundamental aspect is that the centroid dynamics and

envelope dynamics are decoupled in the absence of image

charge effects. In this work, we have extended this desirable

decoupling feature of the centroid and envelope dynamics to

the case of general linear coupled systems. It has been found

that the envelope matrices (W and V), the phase advance

matrix (P), and the beam matrix (R) are defined relative to

the beam centroid, and they evolve independently of the lin-

ear terms in the quadratic Hamiltonian. We clarified further

that all of the formulations established by Qin-Davidson’s

generalized CS theory are applicable, even in the presence of

a centroid motion. The generalized CS theory provides an

effective framework for studying beam dynamics in complex

coupled lattices, with the freedom to control centroid

motions. Hence, it would help to discover a more optimized

lattice design and beam manipulation scheme in larger

parameter spaces. The addition of space-charge effects to the

centroid and envelope motions in coupled beam dynamics is

already being investigated, and that work will be published

elsewhere, together with numerical examples.
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