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A method to control the diocotron instability of a hollow electron beam with periodic dipole

magnetic fields has been investigated by a two-dimensional particle-in-cell simulation. At first,

relations between the diocotron instability and several physical parameters such as the electron

number density, the current and shape of the electron beam, and the solenoidal field strength are

theoretically analyzed without periodic dipole magnetic fields. Then, we study the effects of the

periodic dipole magnetic fields on the diocotron instability using the two-dimensional particle-in-

cell simulation. In the simulation, we considered the periodic dipole magnetic field applied along

the propagation direction of the beam, as a temporally varying magnetic field in the beam frame. A

stabilizing effect is observed when the oscillating frequency of the dipole magnetic field is opti-

mally chosen, which increases with the increasing amplitude of the dipole magnetic field.

Published by AIP Publishing. https://doi.org/10.1063/1.5018425

I. INTRODUCTION

In the research field of non-neutral plasma physics, the

active control of a diocotron instability remains as an impor-

tant and practical research issue. The diocotron instability is

one of the common plasma instabilities induced by the same

underlying mechanism as the Kelvin-Helmholtz instability,

which is evolved by a shear in the flow velocity of surface

waves.1–7 Typically, the diocotron instabilities are observed

during the propagation of non-neutral hollow electron beams

(or annular electron layers) along a drift section.

Recently, a novel beam collimation concept based on

the hollow electron beam has been proposed in the high-

energy particle accelerator community.8–11 In the proposed

collimator system, as shown in Fig. 1, a hollow electron

beam encloses a circulating beam (e.g., a proton beam for

the Large Hadron Collider at CERN) and induces radial non-

linear space-charge kicks only to the high-amplitude halo

particles. The overlap region is typically a few meters, and

for this study, the specific propagation length of 2.51 m was

chosen. If the hollow electron beam remains stable and per-

fectly symmetric, it would drive the halo particles toward the

collimators in a controlled manner without disturbing the

core of the circulating beam as desired. On the other hand, if

the hollow electron beam becomes distorted by the diocotron

instability, it would produce finite electric or magnetic fields

inside and eventually perturb the beam core. Hence, it is of

great importance to choose operating parameters (e.g., elec-

tron beam density, beam sizes, and magnetic field strength)

properly so that the growth of the instability is minimized. If

there are certain limitations for the choices of the parameters,

however, we should find other active means of controlling

the diocotron instability. In this study, we focus on the

control of the diocotron instability by applying periodic

dipole magnetic field components.

For simplicity, we consider the hollow electron beam

only without the circulating beam inside. The propagation

length of the hollow electron beam in Fig. 1 is 2.51 m, which

will be used as the characteristic axial length L of the system

in this study. The transit time of the beam is defined as the

time for the electron beam to pass through the propagation

length once. The assumption of the low density electron

xpe � xce is used for the electrostatic perturbation in the

present analyses, where xpe is the electron plasma frequency

and xce is the electron cyclotron frequency. More details of

the simulations will be presented in the following sections.

Analytical investigations on the diocotron instability are

introduced in Secs. II and III based on some of our previous

works.12–16 Although they are obtained with approximations,

the analytical expressions explain the relationship among sev-

eral important physical parameters which could directly affect

the diocotron instability. Most of those parameters are consid-

ered as control variables in the simulation study. As an active

means of suppressing the diocotron instability, a periodic

dipole magnetic field is introduced in Sec. IV. In Sec. V, the

effects of periodic dipole magnetic fields on the diocotron

instability are presented with the numerical results obtained

by two-dimensional particle-in-cell (PIC) simulations. Finally,

the conclusion of this study is given in Sec. VI.

II. STABILITY ANALYSIS

The governing equation for the perturbed electrostatic

potential / of a uniform hollow electron beam in the cylin-

drical geometry is14

@

@t
þ X rð Þ @

@h

� �
r2/ r; h; tð Þ ¼ 2XD

@/
@h

1

r

dne0
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; (1)
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where the diocotron frequency XD is

XD ¼
x2

pe

2xce
/ ne0

B
; (2)

and the angular velocity XðrÞ is equal to

X rð Þ ¼ XD 1� b2

r2

� �
; (3)

in b � r � d. Here, ne0 is the electron density and b and d
are the inner and the outer radii of the electron beam, respec-

tively. This governing equation is derived based on the drift-

Poisson model of the low-density cylindrical annular plasma

column confined by a uniform magnetic field B applied in

the axial direction of the column. With the Fourier transform

in the h coordinate, an analytical solution for / was obtained

in Ref. 14, which allows us to get an expression for the

growth rate of the electrostatic perturbation of the hollow

electron beam in the cylindrical geometry with the conduct-

ing boundary as

c lð Þ ¼ XD

2

(
4

b2l

d2l
1� l 1� b2

d2

� �
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� �

� 2� l 1� b2

d2

� �
� d2l

R2l
1� b2l

d2l

� �" #2)1=2

; (4)

for the azimuthal mode number l. Here, R is the radius of the

conducting boundary. The result indicates that the cylindrical

diocotron instability is observed for l � 2 because the

growth rate has a non-zero value for such conditions. We

note that both the growth rate and the dominant mode num-

ber become bigger as the beam becomes thinner as shown in

Fig. 2. Also, it is obvious that the growth rate is proportion

to the diocotron frequency, which means that the instability

grows in proportion to ne0=B when the parameters associated

with the beam thickness are fixed.

A radially uniform beam profile was assumed in the the-

ory, which causes the stable l¼ 1 mode. However, the realistic

experimental beam profile is not radially uniform, and it was

reported that the l¼ 1 mode becomes unstable in an inhomo-

geneous electron column with a stationary point in the non-

monotonic equilibrium rotation frequency profile.13 In spite of

valuable theoretical efforts, the l¼ 1 mode was not observed

in the conventional modal analysis.17 However, the inclusion

of a radially inhomogeneous density profile in a nonmodal ini-

tial value problem is not considered in this study.

III. BEAM PROFILE EVOLUTION

In this section, a method to predict the beam profile after

propagation through the characteristic axial length of the col-

limator system is presented. For the analysis, we consider a

uniform low-density electron column confined in an axially

applied magnetic field. The realistic three-dimensional beam

dynamics was analyzed using a two-dimensional simulation

without considering the beam front effect, which is a tran-

sient phenomenon. It was assumed that the z-dimensional

wavelength is quite large. That is to say, kzL� 1, where kz

is the wavenumber in the axial direction. With this condition,

the radial equilibrium electric field induces a slow rotation of

the column through E� B drift. The angular rotation fre-

quency is approximately given by the diocotron frequency

XD. The total rotation phase u of the electron column during

the transit time DT � L=vz can be expressed as

u � XDDT / ne0

B

L

vz
; (5)

where L is the characteristic axial length of the system and vz

is the axial velocity of the electron beam which is assumed

to be constant. If the electrons emitted from the cathode

behave as the non-relativistic Child-Langmuir flow, the cur-

rent density is

J ¼ ne0evz / V3=2; (6)

where V is the cathode voltage and vz � ð2eV=meÞ1=2 / V1=2.

Combining Eqs. (5) and (6), we find that the rotation phase of

the electron column is determined by

u � const:�
ffiffiffiffi
V
p

B
L: (7)

Since the evolution of the beam cross-section depends on the

rotation phase u, we expect that the shapes of the transverse

beam profiles measured at the axial distance L would be

more or less similar for the same values of
ffiffiffiffi
V
p

=B. In other

words, we may use the single scaling parameter
ffiffiffiffi
V
p

=B to

predict the beam profile. Even though this scaling is obtained

for the uniform electron beam, it could be applied for the

hollow beam as well, provided that the width of the hollow

beam is small compared with its inner radius.

FIG. 2. Plots of the normalized growth rate of the unstable modes versus the

relative thickness, b/d, of the annular cylindrical beam for azimuthal num-

bers l ¼ 2; 3; 4; 5 with fixed d=R ¼ 0:8.

FIG. 1. Conceptual layout of the collimator system.9,10
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IV. PERIODIC DIPOLE MAGNETIC FIELD

From the theoretical analyses above, we may conclude

that there are enough parameter knobs we can adjust for the

control of the diocotron instability. Although less density,

thicker electron beam layer, and higher magnetic field

strength are helpful for stabilizing the diocotron instability,

there are certain limits for each parameter. For the proton

beam collimation, the electron beam density should be above

a certain level so that it can maintain the effect of “kicking”

the halo particles around the proton beam. The thick electron

beam layer and high magnetic field strength could increase

the cost of the experimental apparatus significantly.

Therefore, we need to investigate an alternative way to con-

trol the diocotron instability of the hollow electron beam.

Motivated by periodic magnetic focusing of sheet electron

beams,18 we consider periodic dipole magnetic fields to sup-

press the diocotron instability. The field configuration with

periodic dipole magnetic fields added to a solenoidal field

can be represented by

BðzÞ ¼ Bu cos /ðzÞx̂ þ Bzẑ: (8)

The oscillating phase /ðzÞ of the magnetic field is related to

the propagation time t ¼ z=vz as

/ ¼ /0 þ 2pfut: (9)

If the dipole magnetic fields make m/ oscillations during the

transit time DT, one obtains the temporal frequency

fu ¼ m/=DT. In terms of the spatial variables, one can have

the periodicity of the dipole k ¼ L=m/. The actual implemen-

tation of the periodic dipole magnetic field is straightforward

and technically feasible. The details of the effects of the peri-

odic dipole magnetic fields will be discussed in Sec. V.

V. SIMULATION RESULTS

A. Validation of simulation

A two-dimensional cylindrical particle-in-cell simula-

tion was performed to investigate the effects of the periodic

dipole magnetic field applied to the electron beam. The sim-

ulation code was modified from the XPDC2 code originally

developed at the Plasma Theory and Simulation Group in the

University of California at Berkeley.19

The simulation domain and the initial density profile are

shown in Fig. 3. Since the initial transverse velocities of

electrons are set to zero and the initial electron temperature

Te0 is about 2:85� 10�4 eV, it can be considered that elec-

trons do not have a transverse velocity distribution. The rea-

son that most of the electrons are distributed at the inner side

of the hollow beam is to maximize the effect of “kicking”

halo particles of the proton beam.9 This non-uniformity of

the density makes the analytical calculation of the diocotron

frequency XD rather difficult, so we will not use it explicitly

in this section. The cylindrical conductor of a radius

R¼ 3 cm is assumed to be grounded. The values of the beam

radii b and d are chosen based on the shape of the hollow

cathode electron gun used in the experimental setup. The

outer diameter of the beam is 2d ¼ 1:524 cm, and the inner

diameter is 2b ¼ 0:8 cm.

Figure 4 shows the modification of the density profiles

of the hollow electron beam by the diocotron instability

for the variations of peak densities and magnetic field

strengths. The cathode voltage is set to 9 kV for this case,

which yields that the axial velocity of the electron beam is

vz ¼ 5:622� 107 m/s. The theoretical analysis made in

Sec. II for the annular electron column with a uniform

density profile indicates that the growth rate of the dioco-

tron instability is proportion to n/B. In the previous

work,14 it was reported that the theory is in good agree-

ment with the numerical simulation for a uniform beam

case. Figure 4 illustrates the same patterns for each column

which has the same n/B. It means that the theoretical esti-

mation is still valid even for non-uniform density cases.

Qualitatively, the dominant azimuthal mode number is six

for these cases.

Figure 5(a) shows the density profiles of the hollow

electron beam after propagating for a transit time DT. For the

comparisons of the analytic results in Sec. III with the simu-

lation results, a hollow electron beam with a uniform density

profile is launched for the results in Fig. 5. Three lines

(1)–(3) indicate the cases with three different scaling param-

eters, ðV½kV�Þ1=2ðB½T�Þ�1 ¼ 5, 10, and 15, respectively. It

appears that the beam cross-sectional shapes are very similar

for the same values of
ffiffiffiffi
V
p

=B. For numerical verifications,

the normalized Fourier-transformed electrostatic potentials

for each case are shown in Fig. 5(b). Here, the normalization

factor /k0 is measured from the uniform initial profiles. The

lines are connecting the average values of /k=/k0 for a givenffiffiffiffi
V
p

=B value, and the error bars indicate the standard devia-

tions. It is clear that the mode structures have the same ten-

dency when they have the same scaling parameters
ffiffiffiffi
V
p

=B.

The dominant mode number is four for each case, and the

mode structures are more clearly observed for larger values

of
ffiffiffiffi
V
p

=B as shown in line (3).

The same numerical investigation was performed for

the cases of non-uniform initial densities (see Fig. 6). The

initial density profiles applied for the simulations were cho-

sen as close as possible to the experimental measure-

ments.20 It is clear that the mode structures for these cases

also have the same tendency when they have the same scal-

ing parameter
ffiffiffiffi
V
p

=B. Even though the dominant mode does

not clearly appear because of the noise from spatial distri-

bution, the overall tendency is apparently the same with the

FIG. 3. (a) The simulation domain of a hollow electron beam in the cylindri-

cal geometry and (b) initial density profile from the experiment.
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FIG. 5. (a) Density profiles and (b) normalized Fourier-transformed electro-

static potentials for the cases of uniform initial densities. The lines (1)–(3)

indicate the cases with the scaling parameter
ffiffiffiffiffiffiffiffiffiffiffiffi
V½kV�

p
=B½T� ¼ 5; 10; 15,

respectively.

FIG. 6. (a) Density profiles and (b) normalized Fourier-transformed electro-

static potentials for the cases of non-uniform initial densities. The lines (1)–(3)

indicate the cases with the scaling parameter
ffiffiffiffiffiffiffiffiffiffiffiffi
V½kV�

p
=B½T� ¼ 5; 10; 15,

respectively.

FIG. 4. Two-dimensional density profiles of a hollow electron beam with the variations of (a) initial peak densities ne0peak
¼ 1015 (left), 5� 1014 (center), and

2:5� 1014 m�3 (right) for a fixed magnetic field intensity of 0.2 T and (b) applied magnetic field strengths B¼ 0.1 (left), 0.2 (center), and 0.4 T (right) for a

fixed ne0peak
¼ 5� 1014 m�3 at t ¼ 2:5� 10�7 s.
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same scaling parameter. All of these results indicate that

the simulation results are in good agreement with the linear

theory.

Figure 7 shows the comparison of numerical simulation

with the experimental results.20 Non-ideal conditions of the

experiments, which are not considered in the simulations,

cause some differences after propagating for a transit time

DT. Nonetheless, we confirmed in both simulations and

experiments that the scaling parameter
ffiffiffiffi
V
p

=B determines the

degree of the beam cross-section evolution.

B. The effect of periodic dipole magnets

From now on, we investigate the effects of the periodic

dipole magnets on the diocotron instability. Since an analyti-

cal solution for the evolution of the hollow electron beam

with periodic dipole magnets is beyond the scope of this

work, we discuss their possible effects through numerical

simulations only. First of all, we note that the periodic dipole

magnets, which are applied perpendicular to the propagation

direction of the electron beam in addition to the solenoidal

magnetic field along the propagation direction, can be con-

sidered as a temporally oscillating magnetic field in the

beam frame of the two dimensional simulation. For the pre-

sent simulations, the oscillating frequency of the magnetic

field fu is set in such a way that the magnetic field oscillates

twice, while the beam passes through the propagation length

once, i.e., fu ¼ 2=DT ¼ 1:49� 107 Hz. The reason for this

parameter choice will be explained later. We will mainly

focus on the effects of the different magnitudes of the dipole

magnetic field for a fixed fu.

The effects of the periodic dipole magnetic field are

shown in Fig. 8. Simulations are performed with the condi-

tions that the external magnetic field strength B ¼ 0.1 T and

the peak value of the electron density ne0peak
¼ 9� 1014 m�3

when there is no dipole magnetic field. Figure 8(a) clearly

shows that the evolution of the diocotron instability slows

down as Bu increases. It seems that the periodic dipole mag-

netic field impedes the rotation of the particles. For the anal-

ysis of the diocotron instability, the trajectories of only a few

numbers of particles are plotted in Fig. 8(b) so that we can

distinguish the differences in their velocity trajectories

clearly. We expect that the velocity shear would be strong

when the velocity differences between the particles at the

outer and those at the inner sides are large. Figure 8(c) shows

that the average azimuthal velocity vU decreases with the

increase in Bu. Hence, it appears that the stronger dipole

magnetic fields are better for controlling the diocotron insta-

bility. However, due to the non-axial magnetic field compo-

nents, we observe that the test particles drift back and forth

in the radial direction as indicated in Fig. 8(b). This motion

causes broadening of the density profile in the radial direc-

tion, which reduces the maximum density at the inner side of

the hollow electron beam. While this density broadening

does not affect the evolution of the diocotron instability so

much, it is not desirable for the collimation of the proton

beam. To keep the density at the inner side of the hollow

electron beam high enough for the halo removal, therefore,

we cannot increase the magnitude of the periodic dipole

magnetic field too much. There is an optical value of Bu

which is about 5 Gauss in the test case, with which the dioco-

tron instability is mitigated while the beam broadening is not

so large.

Now, the reason why we choose the value of the oscil-

lating frequency of the magnetic field to be 2=DT can be

explained in a similar manner. If the oscillating frequency of

the applied magnetic field is too low, the particle motion in

the radial direction is enhanced, and the density profile

would be broadened. Thus, it seems obvious that a higher

azimuthal frequency would be preferable in order to mini-

mize the density broadening. However, there is also a prob-

lem for the high azimuthal frequency. When the frequency

becomes too high, the particle motion becomes nearly simi-

lar to the case with only the axial magnetic field. In other

words, the dipole magnetic fields would not have any stabi-

lizing effects for the diocotron instability. Therefore, for the

present study, we determined the value of fu in such a way

that the dipole magnetic fields provide a noticeable stabiliz-

ing effect for the diocotron instability while keeping the den-

sity broadening within an acceptable degree. We note that

fu ¼ 2=DT corresponds to m/ ¼ 2, which means that the

magnetic field oscillates twice along the propagation length.

Practically, this m/ ¼ 2 magnetic field configuration could

be easily implemented by an array of dipole magnets with a

step-wise variation of the field strengths in the propagation

direction of the beam.

VI. CONCLUSIONS

In this paper, the two-dimensional particle-in-cell simu-

lations of the diocotron instability of a hollow electron beam

are compared with the analytic theory and experimental

observations. The relations between the diocotron instability

and several physical parameters are reported, such as the

electron density, the applied solenoidal magnetic field, and
FIG. 7. Comparisons between numerical simulations and experimental

results20 for the cases of non-uniform initial densities.
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the acceleration voltage of the electron beam. The analytic

growth rate is proportional to n/B theoretically, which can be

expressed with a scaling parameter,
ffiffiffiffi
V
p

=B in experiments.

A method to control the diocotron instability of a hollow

electron beam by applying periodic dipole magnetic fields

has been investigated. It turns out that the method is effective

for stabilizing the diocotron instability. More precisely, a

stronger dipole magnetic field is better for stabilizing the dio-

cotron instability but worse for collimating the proton beam

because of the density broadening of the hollow electron

beam. Therefore, an appropriate magnitude of the dipole

magnetic field should be determined by considering a trade-

FIG. 8. (a) Density profiles, (b) traces of test particles, and (c) v/ when the periodic dipole magnetic field is applied along the beam propagation with several

different magnitudes at t ¼ 1:6� 10�7 s.
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off between those two effects. We also note that the optimal

periodicity of the dipole fields depends on the required elec-

tron beam density. In a practical application, where one may

need to change beam current and transverse beam size, some

flexibility on the periodic dipole field parameters may be

required.

Since an analytical solution for the evolution of the hol-

low electron beam with periodic dipole magnets is beyond

the scope of this work, we discussed their possible effects

through numerical simulations only. A kinetic theory for the

nonmodal shearing mode approach is a good tool to explain

the instabilities in the sheared flow, which is our future

work.
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