

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Beam Physics Topics 1

Alexander Valishev Retreat Preparation 4 April 2017

Topics

- PIP-II
- Multi-MW after PIP-II
- FAST/IOTA
- Beam Physics
 - Theoretical Beam Dynamics
 - Computational Beam Dynamics
 - Experimental Beam Dynamics (incl. Space charge, instabilities, electron cloud)

PIP-II

- http://pip2.fnal.gov
- Proton Improvement Plan-II (PIP-II) is Fermilab's plan for providing powerful, high-intensity proton beams to the laboratory's experiments

laboratory's experiments.

- Selected R&D topics
 - Microphonics

3

- Consistent high gradient srf at low beta
- Booster beam intensity

Post PIP-II multi-MW Upgrade = Replace Booster

FAST/IOTA : Overarching Motivation – R&D on Intensity Frontier Accelerators for HEP

- To enable multi-MW beam power, losses must be kept well <0.1% at the record high intensity:
 - Need <0.06% for the post PIP-II ~2.5 MW upgrade</p>
 - Present level ~3-5% in Booster and MI synchrotrons
 - (Very challenging after 50 years of development)
- FAST= Fermilab Accelerator Science and Technology facility
- IOTA Integrable Optics Test Accelerator

Beam Theory and Simulations

Major motivation – demands of FNAL complex/upgrades:

- Operations, PIP-I, I+, II, III, experiments, IOTA, colliders, etc

Advancing beam theory:

 instabilities with space-charge & FB, parametric Landau damping, integrable nonlinearities, particle-matter interactions, future collider limitations and scenarios, etc

Suite of modeling tools, developed at Fermilab:

- MARS
 Simulations of targetry, beam loss, collimation and background
- Synergia Simulations of beam dynamics emphasizing collective effects
- OPTIM Beam optics
- Lifetrac Single particle dynamics

IOTA Construction and Research Timeline

	Electron Injector	Proton Injector	IOTA Ring
FY15	20 MeV e- commiss'd beam tests	Re-assembly began @MDB	50% IOTA parts ready
FY16	50 MeV e- commiss'd beam tests	50 keV p+ commiss'd	IOTA parts 80+% ready
FY17	150-300 MeV <i>e</i> - beam commissioning/tests *	2.5 MeV <i>p</i> + commiss'd beam tests @ MDB	IOTA fully installed first beam ? *
FY18	e- injector for IOTA + other research	<i>p</i> + RFQ moved from MDB to FAST *	IOTA commiss'd with <i>e</i> - Research starts (NL IO)
FY19	e- injector for IOTA + other research	2.5 MeV <i>p</i> + commiss'd beam tests	IOTA research with e- IOTA commiss'd with p+
FY20	<i>e</i> - injector for IOTA + other research <i>b</i>	p+ injector for IOTA	IOTA research with
		eam operations	/ +*

 contingent on \$\$: FY17-20 - under current budget scenario...together with OHEP GARD management we explore options to accelerate start of research by 1 year (1.48M\$ supplemental)