Fermilab ENERGY Office of Science

Future energy frontier colliders in the US and critical accelerator technologies

Vladimir SHILTSEV (AD/APC) Fermilab All-Sci-Retreat, April 8, 2017

Future Energy Frontier in US

- Post LHC 40-500 TeV cme pp colliders:
 - finish 87km SSC tunnel, 16 T magnets = 50 TeV cme
 - 233 km VLHC, 2 T superferric magnets = 40 TeV cme
 - 4.5T small SC, 270 km "Texas-tron"/1900 km "sea-tron" = 100/500TeV
- Post ILC 1-10 TeV cme e+e- colliders:
 - 1 TeV ILC upgrade with "novel SRF technology"
 - 3 TeV CLIC-type NC RF
 - 1...3...10 TeV plasma beam/laser driven
- New Branch 3,6,...1000 TeV cme $\mu + \mu$ colliders:
 - "traditional" with 20T SC magnets (Fermilab site filler) 6 TeV cme
 - 16T SC +pulsed magnets in LHC/SPS/PS tunnels 14 TeV cme
 - Same with Low-Luminosity "no cooling scheme"
 - Far-far-future Crystal/CNT acceleration 100-1000 TeV cme, low-L

Accelerator R&D:

- What we do now
- What we might need to do

SSC

3

* 23 km out of 87 were bored

* 6.6 T dipoles prototyped

Recently:

- Cheap tunnel \rightarrow 270 km
- Cheap magnets 4.5T

4 4/8/2017 Shiltsev Retreat'17 | US EF Future

VLHC-I: 20+20 TeV p-p 233 km

FNAL-TM-2149 (2001)

Table 9.3. A comparison by major system of the Stage-1 VLHC costs and the SSC baseline cost escalated to FY2001 dollars.

Collider System	Fraction of total	Fraction of Total
	Stage-1 VLHC Cost	SSC Collider Ring Cost
Total Cost	100 %	100 %
Construction – Below Ground	51 %	15 %
Construction – Above Ground	8 %	5 %
All Magnets (except IR)	22 %	61 %
All Other Collider Systems	19 %	19 %
Total Cost in FY2001 M\$	\$4,138	\$3,790

ILC: 0.5TeV, 230 MW → 1 TeV, ??

Two beams concept CLIC: 3 TeV e+e-, ~60 km, 560 MW... then klystrons again

Figure 1: Schematic of the NLC.

Plasma Waves

Design of a 6 TeV muon collider

M-H. Wang^a, Y. Nosochkov^a, Y. Cai^a and M. Palmer^b Published 9 September 2016 • © 2016 IOP Publishing Ltd and Sissa Me Journal of Instrumentation, Volume 11, September 2016 2016 JINST 11 P09003

Table 2. Parameters of the 6 TeV muon collider design.

Parameter	Unit	Value
Beam energy	TeV	3.0
Number of IPs		2
Circumference	m	6302
eta^*	cm	1
Tune x/y		38.23/40.14
Momentum compaction		-1.22E-3
Normalized emittance	mm∙mrad	25
Momentum spread	%	0.1
Bunch length	cm	1
Muons/bunch	10 ¹²	2
Repetition rate	Hz	15
Average luminosity	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	7.1

20 T in dipoles

Futuristic: Crystals & Muons *n*~10²² cm⁻³, 10 TeV/m →

Accelerator R&D at FNAL/US

- Accelerator and Beam Physics
 - Experimental R&D at IOTA/FAST
 - Beam physics, theory, design, modeling
- Advanced Accelerator Concepts
 - Wakefield collider design/analysis, exp'ts
- Particle Sources and Targets
 - High-power targetry R&D
- High-Field Magnets and Materials
 - SC magnets (16 T) and materials (doped)
- RF Accelerator Technology
 - Cost-effective SRF R&D (G, Q, NbCu, Nb3Sn), NC RF R&D (300MeV/m)
- What we might need to explore:
 - Low field HTS magnets
 - Pulsed/fast cycling magnets

- Muon sources
- Acceleration in Xtals/CNTs
- Graphene/borophene conductors