Deep Learning based Diagnostics of Orbit Patterns in rotating machinery

10/05/2016 UNIST, Korea

Haedong Jeong, Sunhee Woo, Suhyun Kim, Seungtae Park, Heechang Kim, and Seungchul Lee

Contents

- Orbit Analysis for Rotating Machinery
- Deep Learning
- Pre-processing Steps
- Experimental Results
- Implementation
- Conclusions

Rotating Machinery

- Mechanical component
- Key components to generate electric power (in power plants)
- Performance degradation and entire system break downs
 - Plant operation/maintenance cost
 - Level of safety

Monitoring Systems

- Prognostics and Health Management (PHM) approach
- Prevent/Predict system failures

Orbit Analysis for Rotating Machinery

- Visualize shaft movement
 - Vibration information in 2D

- Integrated analysis possible
 - Different dynamic behaviors \rightarrow change orbit shape
 - But,
 - Quantified method is not developed
 - Numerical features is not defined easily
- Still manually monitored by human operators in most power plants

Known-Fault Modes from Orbit Shapes

Unbalance

• Misalignment

Orbit shape of misalignment

• Hit and rubbing

Orbit Shape of hit and bounce rub

Training Data (Data-driven Method)

• The orbit vibration data are collected from the rotor kit

- Pre-defined 5 classes of orbit
 - Each shape is related to the specific spindle rotor status
 - 150 orbit images are acquired for each pattern

	Normal Unbalance		Misalig	Rubbing	
Fault	Circle (C)	Ellipse (E)	Eight (8)	Heart (H)	Tornado (T)
Orbit Shape				3	

Proposed Idea

(Google, Facebook, ...)

Deep Learning

- Neural networks
 - Simple neurons, nonlinear activation functions
- Abstraction from combination of non-linear method
- Automatic discovery of the representation for classification

Deep Learning

- Neural networks
 - Simple neurons, nonlinear activation functions
- Abstraction from combination of r ٠
- Automatic discovery of the repres
- Image pattern recognition probler
 - <u>Convolutional</u> Neural Networks (CN
 - Perception like human

Structure of Convolutional Neural Networks

Convolutional Neural Networks (CNN)

- Max pooling
 - Invariance to local translation/rotation
- 5 output neurons
 - Value of neuron means the degree of activation
 - Probability of classification
 - Each neuron represent each class
 - [1 0 0 0 0] = Class 1
 - [0.3 0.9 0 0 0] = Class 2

Convolution layer and Subsampling layer

0.1

0.1

0.9

0.2

0.1

Deep Learning on Orbit Images

- Autonomous orbit image pattern recognition
- Two processes: Training and classification

Pre-processing Steps for Better Classification

- Independent of orbit image pattern
 - Location, rotated angle and size
- Maximize performance of training data set
 - Although CNN is kind of capable to handle such local variations

1) Offset Shift (Image Centering)

- Pattern: Invariance of the center position
- Shifted position is calculated by subtracting mean values

2) Re-orienting

- Pattern: Invariance of the tilted angle
- Eigen-analysis

$$C = A^{T} A = V \Lambda V^{T}$$
$$A_{R} = A V$$

C : covariance matrixV : eigenvector matrix Λ : eigenvalue matrix

3) Orbit image Re-scaling (Normalizing)

- Normalization of the scale of orbit with maintaining a ratio
- Resize the original image to the training image size

- Size of orbit shape is related to the degree of machine malfunction
 - The fault type classification is not depend on the size of image

4) Optimization for De-noising

- Orbit Shape De-noising
 - Generally the orbit signal contains a sensor noise
 - Decompose into fundamental harmonic signals
 - Optimization method based on the mathematical orbit model

Classification Performance

- Artificially generated-orbit image set is used to measure classification performance
 - The orbit shapes and orientation are similar to those of the real rotor test kit

Classification Performance

- Artificially generated-orbit image set is used to measure classification performance
 - The orbit shapes and orientation are similar to those of the real rotor test kit

Advantages

- No need data from fault modes
 - One of challenges of data-driven PHM approach
 - Orbit pattern from rotor dynamics (system-based or model-based)
- Continuous health condition status

Experiment Results

Experiment

- Total 750 orbit images are used for training
- Vibration signals to 50×50 pixel image
- 3 layers structure (convolutional and sub-sampling layer, and fully connected to 5 output neurons)

Result

- 350 orbit images are used for validation
- Total misclassification for the given test set is overall **1.1**%

		Conius	sion ma	llix	
True			Classified	l	
Shape	С	E	Н	8	Т
С	70	0	0	0	1
Е	0	70	1	0	0
н	0	0	67	0	0
8	0	0	2	70	0
Т	0	0	0	0	69

True Class	Heart	Heart	Tornado
Orbit Image	$\left(\right)$	\Diamond	\bigcirc
Result of Classification	Ellipse	Eight	Circle

Benchmark:

- Hand-crafted features: 8×1 Vector (full spectrum)
- Total misclassification for the given test set is overall **6.0%**

Benchmark: Neural Network

- Hand-crafted features: 8×1 Vector (full spectrum) •
- Total misclassification for the given test set is overall **8.5%** •

True			Classified		
Shape	С	E	Н	8	Т
С	68	0	0	0	0
E	0	69	6	0	0
н	0	0	54	8	0
8	2	1	10	62	3
Т	0	0	0	0	67

- 1 Input Layer
 - 8 neurons
- 1 Hidden Layer
- 100 neurons
- 1 Output Layer
 - 5 neurons

Structure

Benchmark: Gaussian Discriminant Analysis (GDA)

- Input: 8×1 Vector
- Total misclassification for the given test set is overall 6.0%

True			Classified		
Shape	С	E	Н	8	Т
С	69	5	0	0	0
E	1	64	0	0	0
н	0	1	68	12	0
8	0	0	2	58	0
Т	0	0	0	0	70

Method	Feature	Input	Structure	Error
Deep Learning	Auto Extraction	50×50 Image	 Convolutional Neural Networks 1 Input Layer 3 Layers Convolution Layer Sub-sampling Layer 1 Output Layer 	1.1%
Artificial Neural Networks (ANN)	Harmonics forward, backward vector coefficients	8×1 Vector	 1 Input Layer 8 neurons 1 Hidden Layer 100 neurons 1 Output Layer 5 neurons 	8.5%
Gaussian Discriminant Analysis (GDA)	Real ValueImaginary Value	8×1 Vector	Mean VectorCovariance Matrix	6.0%

Implementation (IoT sensors + Cloud platform)

IoT Sensor

- System
 - Wi-fi Micro-controller
 - IMU Accelerometer
 - Lithium-ion battery

	Image	Spec		
Particle Photon		Broadcom BCM43362 Wi-Fi chip STM32F205 120Mhz ARM Cortex M3 1MB flash, 128KB RAM https://store.particle.io/		
IMU Sensor		3 acceleration channels 16-bit data output 1 kHz Sample Rate https://www.sparkfun.com		

* Wi-fi Communication Maximum Speed : 11 MBit/s

- Training Data Acquisition
 - Rotor Testbed

Rotor Testbed						
RPM	1500					
Fault Mode	Normal Unbalance Misalignment					
Sensor Position Bearing Housing						
Sensor	X axis accelerometer					
Sample Rate	1 kHz					

Web-based Dashboard

- Web-based service
 - Cloud Server
 - Various devices can access
- Full spectrum Information
- Probability of Machine state

Traditional machine learning applied

IoT Sensor with Deep Learning

• Data processing process

Conclusions

- Orbit Image as Features for Machine Diagnosis
- Deep Learning for Better Estimation Accuracy
- Validate with a Testbed
- Implementation using IoT and Cloud Platform

- System-based
 - Known orbit pattern \rightarrow no need a prior data collection
- Auto feature extraction via deep learning

PHM with IoT and Cloud Platform

Prognostic Health Management (PHM) Short-term Analysis IoT Sensors Local Analysis Machinery Machine state diagnosis Fault mode classification ٠ Maintenance Long-term Analysis **Cloud Computing Integral Analysis Trend Analysis IoT Sensor Deep Learning State Estimation** Time Series Analysis and Causality ٠ - Classification Sensors - Pattern Recognition Monitoring Systems Data Visualization **Short-term Analysis** Intuitive Information Interactive Information Web-based Service **Cloud Platform Data Visualization Machine Learning** IBM Google - Time Series Analysis - Web Service - Probabilistic Graph Model - Interactive անվերիների Google Cloud Platform BM Bluemi **Long-term Analysis** Monitoring

•

•

Data Flow

Estimation

Diagnostics

Prognostics

PHM

UNIST

- Ulsan National Institute of Science and Technology (UNIST)
- Established in 2009
- Specialized in science and technology
- Ulsan, South Korea

iSystems Design Lab

Department of System Design and Control Engineering Ulsan National Institute of Science and Technology (UNIST) Tel: +82-52-217-2726 Fax: +82-52-217-2708 E-mail: seunglee@unist.ac.kr http://isystems.unist.ac.kr

Professional Experience

- •2013-Present: Assistant Professor, UNIST
- •2010-2013: Postdoctoral Research Fellow, The University of Michigan at Ann Arbor

Education

2010: Ph.D. Mechanical Engineering, The University of Michigan at Ann Arbor
2007: M.S. Mechanical Engineering, The University of Michigan at Ann Arbor
2001: B.S. Mechanical and Aerospace Engineering, Seoul National University

iSystems Design Lab

- immune engineering for self-sustainable system and maintenance-free machine design
- informatics for visualization and machine health monitoring
- internet of things for smart factories

