Study on Estimation of Mechanical Properties of FDM-based 3D Printing Parts

Heechang Kim, Suhyun Kim, Eunju Park, Namhun Kim, Seungchul Lee* **UNIST**

Literature Review

• Ref. Letcher et al., Material property testing of 3D printed specimen in PLA on an entry-level 3D printer, ASME 2014 International Mechanical Engineering Congress & Exposition

2.50%

4.14%

3.60

3.49

64.03

54.01

45

90

Outline

- Introduction
- Motivation
- Experiment
- Results and Discussion
- Estimation of Maximum Tensile Stress
- Conclusion

Additive Manufacturing (AM)

 Automated systems that take 2D layers of computer data and rebuild them into 3D products

Fused Deposition Modeling (FDM)

Advantages

- A good variety of materials available
- Easy material change
- Low maintenance costs
- Thin parts produced fast

Disadvantages

- Seam line between layers
- The extrusion head must continue moving, or else material bumps up
- Supports may be required

Motivation

- Conventional processing vs. AM
 - The mechanical properties are relatively weak
- Mechanical properties are not known before printing
 - Only time, weight and required filament for the product is predicted in current software
- Necessity of estimation of mechanical properties
 - Optimal printing

Experiment Settings

- Tensile Strength Test
 - ASTM D638

- Factors
 - Model: Sprout (Former's Farm)
 - Materials: ABS or PLA
 - Filament diameter: 1.75 mm
 - Nozzle diameter: 0.4 mm

Factors	Description
Orientation	1) X-axis direction 2) 45°
Materials	1) ABS 2) PLA
Infill rate	1) 50% infill 2) 100% infill

Results

Factors	Description
Orientation	1. X-axis direction 2. 45 $^{\circ}$
Materials	1. ABS 2. PLA
Infill rate	1. 50% infill 2. 100% infill

		No.	Orientation	Mat	erials	Infill rate	
		1)	1		1	1	
		2)	1		2	1]
		3)	1		1	2	
		4)	1		2	2	
		5)	2		1	1	
		6)	2		2	1	
		7)	2		1	2	
		8)	2		2	2	
25					45		
55					40		· · · · · · · · · · · · · · · · · · ·
MPa)				MPa)	40 -		-
ength(]	ength(35 -	I	-
ile Str	-	-	ile Str	30 -		-	
Tens				Tens	25 -		- -
20	Orientatio	on = x Orie	entation = 45		20 └── In	fill rate = 100	% Infill rate = 50%
35	· · · · ·				45	· · · · ·	
					40	L_	
Pa)				Pa)	40		-
M 4 30	-			<u>ک</u> 35	35	ı I	
ngt				ngt	30 -		
Stre		-		Stre	25 -		
<u>e</u> 25	-			ile	20		
ens				ens	15		
-				F	10		
20	Material =	ABS Ma	terial = PLA		.0	1 2 3 4 Specim	5 6 7 8 en Type

Discussion

• Infill rate

Cross section for orientation

		7	~	*		2.4	000	304	200		
*	7	-	-	-				•	Y		-
*	-	-		a la	1		•	V	¥	-	¥.
4	14.	-	-	1		-	¥	•	¥	Y	*
*	*		-		20	25	•	T	¥	*	*
7	7	*	-			1		Y	*	+	*
w.	~	*	-	-				*	-	V	-
*	4	v	1-					•	Ti		V.
Y.	~	Nr.	v		94.7	1		4.		v.	V
7	Y	v	1.	-	20	. Y		.4.		Y	*
v	v	5	v			1		4.		1	V
1	v	v	v	-	~	1		4	-1	4.	V
1	5kV		X3	0	500	μm			26/J	UL/1	1

Materials

Significant Factor

• ANOVA

- The effect of orientation, material and infill rate

Control factors	Sum of square	Degree of freedom	F	Prob > F	Significance
Orientation	93.54	1	59.09	9.2048e-09	***
Material	1362.7	1	860.64	7.2177e-17	***
Infill rate	408.11	1	257.81	1.0554e-24	***
Orientation × Infill rate	70.63	1	44.62	1.5414e-07	***
Orientation × Materials	16.47	1	10.41	0.0027	***
Infill rate × Materials	33.04	1	20.87	6.9328e-05	***
Orientation × Infill rate × Material	9.74	1	6.15	0.0186	**
Error	50.66	32			
Total	2044.89	39			

- It shows which groups of the factors are significantly different
- All factors have a significant difference

Factor	Difference	95% Confide	nce interval
Material	6.39	5.58	7.20
Orientation	3.06	2.25	3.87
Infill rate	11.67	10.86	12.48

Estimation of Max. Tensile Stress

• Polynomial regression

(M	Pa)
----	-----

	5%	25%	50%	75%	100%
Max. Tensile Stress (PLA)	20.76	24.02	26.53	33.07	41.35
Max. Tensile Stress (ABS)	15.30	14.81	21.26	18.95	32.78

Estimation of Max. Tensile Stress

• Polynomial regression (degree: 4)

- Polynomial regression model of degree 4 is well fitted
- Extra experiment on 85% for verification
 - the error was 1.37%

Gaussian Process Regression

• Uncertainty - On every fill rate range

Conclusions

- Applications
 - Accurate structural mechanics design
 - Possible to design more improved stability in terms of structure using the estimated mechanical properties

- Safety device
 - When an excessive load is applied to a specific part, it can be used for safety device by designing it to break at a characteristic load or more

Future work

• Preparation of the CF-filament

• Estimation considering various variables

