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Rotating Machinery

• Mechanical component

• Key components to generate electric power (in power plants)

• Performance degradation and entire system break downs

– Plant operation/maintenance cost

– Level of safety
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• Prognostics and Health Management (PHM) approach

• Prevent/Predict system failures

Monitoring Systems
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Orbit Analysis for Rotating Machinery

• Visualize shaft movement

– Vibration information in 2D

• Still manually monitored by human operators in most power plants
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Known-Fault Modes from Orbit Shapes

• Unbalance 

• Misalignment 

• Hit and rubbing
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Training Data (Data-driven Method)

• The orbit vibration data are collected from the rotor kit

• Pre-defined 5 classes of orbit

– Each shape is related to the specific spindle rotor status

– 150 orbit images are acquired for each pattern
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- Signal to image - Image pattern recognition

- Deep learning

(Google, Facebook, …)

- Use known-fault modes



Deep Learning

• Neural networks
– Simple neurons, nonlinear activation functions

• Abstraction from combination of non-linear method

• Automatic discovery of the representation for classification
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Deep Learning

• Neural networks
– Simple neurons, nonlinear activation functions

• Abstraction from combination of non-linear method

• Automatic discovery of the representation for classification

• Image pattern recognition problems 

– Convolutional Neural Networks (CNN)

– Perception like humans
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Structure of Convolutional Neural Networks Key idea of Convolutional Neural Networks



• Autonomous orbit image pattern recognition

• Two processes: Training and classification

Deep Learning on Orbit Images
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• Autonomous orbit image pattern recognition

• Two processes: Training and classification

Deep Learning on Orbit Images
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• Autonomous orbit image pattern recognition

• Two processes: Training and classification

Deep Learning on Orbit Images

13

Training Data Pre-processing

Pre-processing

Deep Learning Structure

Input Data ClassificationStructure

Training Process

Classification Process
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Pre-processing Steps for Better Classification

• Independent of orbit image pattern

– Location, rotated angle and size

• Maximize performance of training data set

• Although CNN is kind of capable to handle such local variations
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Experiment Results
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Orbit: Circle

16



Ellipse
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Eight, 8
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Tornado
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Mode Changes
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Advantages

• No need data from fault modes
– One of challenges of data-driven PHM approach

– Orbit pattern from rotor dynamics (system-based or model-based)

• Continuous health condition status
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Data Pre-processing Deep Learning
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Benchmark: Comparison

Method Feature Input Structure Error

Deep Learning Auto Extraction
50×50
Image 

• Convolutional Neural Networks
• 1 Input Layer
• 3 Layers
 Convolution Layer
 Sub-sampling Layer

• 1 Output Layer

1.1%

Artificial Neural 
Networks 
(ANN)

Harmonics forward, 
backward vector 
coefficients

• Real Value
• Imaginary Value

8×1 
Vector

• 1 Input Layer
 8 neurons

• 1 Hidden Layer
 100 neurons

• 1 Output Layer
 5 neurons

8.5%

Gaussian 
Discriminant 
Analysis
(GDA)

8×1 
Vector

• Mean Vector
• Covariance Matrix

6.0%
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Conclusions

• Orbit Image as Features for Machine Diagnosis

• Deep Learning for Better Estimation Accuracy

• Validate with a Testbed

• System-based 

– Known orbit pattern   no need a prior data collection

• Auto feature extraction via deep learning
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