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Rotating Machinery

* Mechanical component
» Key components to generate electric power (in power plants)
* Performance degradation and entire system break downs

— Plant operation/maintenance cost

— Level of safety
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Monitoring Systems

* Prognostics and Health Management (PHM) approach
* Prevent/Predict system failures
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Orbit Analysis for Rotating Machinery

e Visualize shaft movement
— Vibration information in 2D
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 Still manually monitored by human operators in most power plants
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Known-Fault Modes from Orbit Shapes

* Unbalance

Orbit shape of unbalance

e Misalignment

obe

Orbit shape of misalignment

* Hit and rubbing : E %

Orbit Shape of hit and bounce rub
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Training Data (Data-driven Method)

* The orbit vibration data are collected from the rotor kit

* Pre-defined 5 classes of orbit
— Each shape is related to the specific spindle rotor status
— 150 orbit images are acquired for each pattern
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Proposed Idea

Deep Fault
Learning Detection

- Signal to image - Image pattern recognition - Use known-fault modes
- Deep learning
(Google, Facebook, ...)
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Deep Learning

* Neural networks

— Simple neurons, nonlinear activation functions
* Abstraction from combination of non-linear method
e Automatic discovery of the representation for classification
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Deep Learning

* Neural networks
— Simple neurons, nonlinear activation functions

* Abstraction from combination of 1~z === mmmtiad :
» Automatic discovery of the repres .. cati .
* Image pattern recognition probler -..

— Convolutional Neural Networks (CN
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Deep Learning on Orbit Images

e Autonomous orbit image pattern recognition
* Two processes: Training and classification

Training Process
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Deep Learning on Orbit Images

e Autonomous orbit image pattern recognition
* Two processes: Training and classification

Training Process
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Deep Learning on Orbit Images

e Autonomous orbit image pattern recognition
* Two processes: Training and classification

Training Process
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Pre-processing Steps for Better Classification

* Independent of orbit image pattern
— Location, rotated angle and size

* Maximize performance of training data set
* Although CNN is kind of capable to handle such local variations

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

UNhisT 14



UNhisT

Experiment Results
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Orbit: Circle
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Ellipse

Orbit Recognition with Deep Learning
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Eight, 8

Orbit Recognition with Deep Learning
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Tornado

Orbit Recognition with Deep Learning
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Mode Changes

Orbit Recognition with Deep Learning
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Advantages

* No need data from fault modes
— One of challenges of data-driven PHM approach
— Orbit pattern from rotor dynamics (system-based or model-based)

e Continuous health condition status
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Benchmark: Comparison

Method Feature Input Structure Error
* Convolutional Neural Networks
* 1 Input Layer
: * 3 Layers
Deep Learning | Auto Extraction >0%50 y . 1.1%
Image = Convolution Layer
= Sub-sampling Layer
* 1 Output Layer
* 1 Input Layer
Artificial Neural = 8 neurons
rtriCla eura .
Networks Harmonics forward, 8x1 1 Hidden Layer 8.5%
(ANN) backward vector Vector " 100 neurons
coefficients * 10utput Layer
= 5 neurons
_ * Real Value
Gaussian * Imaginary Value
Discriminant g Y 8x1 * Mean Vector 6.0%
Analysis Vector * Covariance Matrix P
(GDA)
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Conclusions

* Orbit Image as Features for Machine Diagnosis

* Deep Learning for Better Estimation Accuracy

Validate with a Testbed

System-based

— Known orbit pattern = no need a prior data collection

» Auto feature extraction via deep learning
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