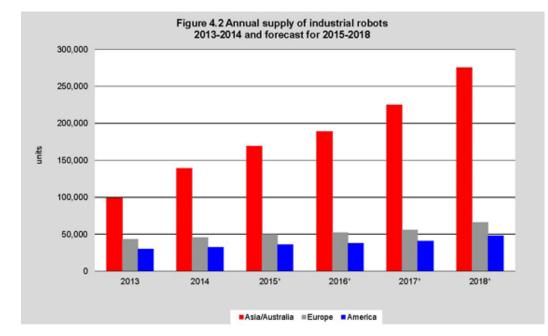
# Servo Motor Diagnostics using Anomaly Detection

Bumsoo Park, Haedong Jeong and Seungchul Lee\* UNIST



- Monitoring Systems for Robot Diagnosis
- Prognostics and Health Management (PHM) for robot
- Simulation Study
  - Model-based Fault Detection and Isolation (FDI)
- Servo Motor Demonstration and Comparison
  - Model-based FDI
  - Unsupervised Learning
- Conclusion




- Monitoring Systems for Robot Diagnosis
- Prognostics and Health Management (PHM) for robot
- Simulation Study
  - Model-based Fault Detection and Isolation (FDI)
- Servo Motor Demonstration and Comparison
  - Model-based FDI
  - Unsupervised Learning
- Conclusion



## **Industrial Robots**

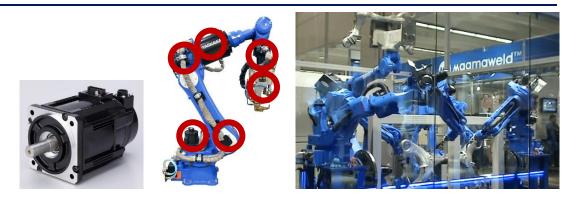
Increased robot usage on factory

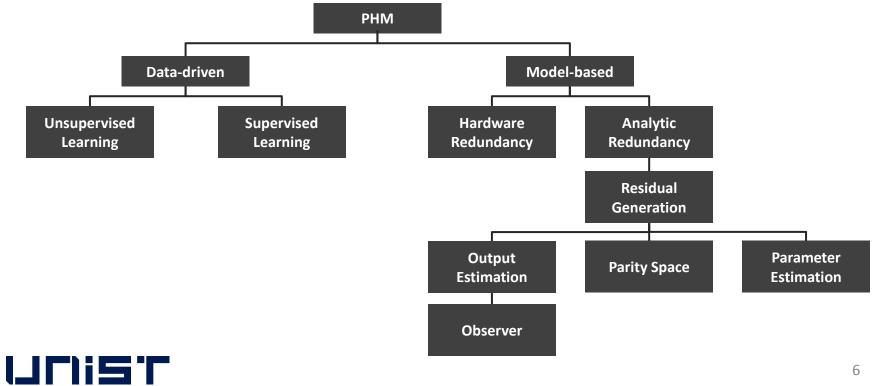




- Breakdown of robot
  - 2015 GM Russia Operation Breakdown for 2 Months
    - Losses over \$100 million
    - Approximately \$1.6 million a day

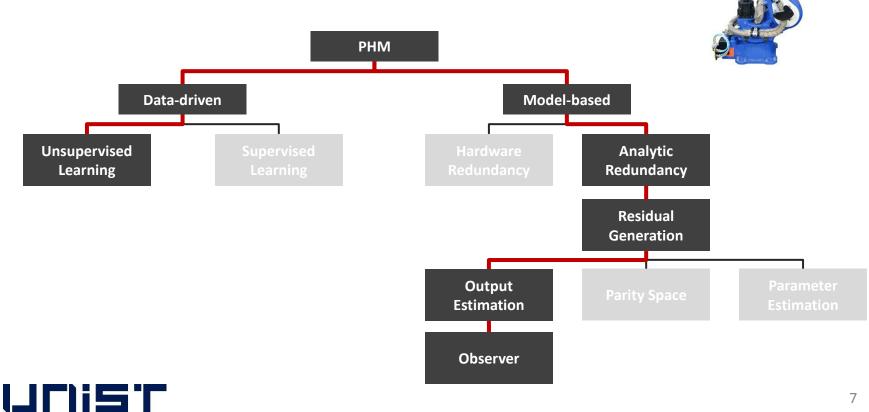






- Monitoring Systems for Robot Diagnosis
- Prognostics and Health Management (PHM) for robot
- Simulation Study
  - Model-based Fault Detection and Isolation (FDI)
- Servo Motor Demonstration and Comparison
  - Model-based FDI
  - Unsupervised Learning
- Conclusion



## **Prognostics and Health Management (PHM)**

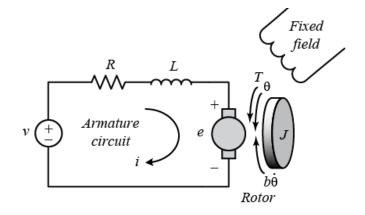

- Key component •
  - Servo motor
- Dynamic movement (6-axis) •





## **Prognostics and Health Management (PHM)**

- Difficult to attach sensors due to dynamic movement of the arm •
  - Mostly existing instrumentation are used (Encoder, Torque)
- In may cases, failure data is not available ۲




- Monitoring Systems for Robot Diagnosis
- Prognostics and Health Management (PHM) for robot
- Simulation Study
  - Model-based Fault Detection and Isolation (FDI)
- Servo Motor Demonstration and Comparison
  - Model-based FDI
  - Unsupervised Learning
- Conclusion



## **DC Motor Position: System Modeling**

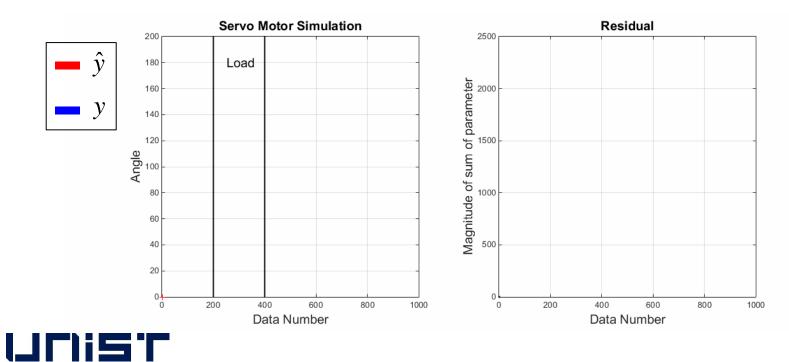
• System representation in state space



$$\frac{d}{dt} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -b/J & K/J \\ 0 & -K/L & -R/L \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1/L \end{bmatrix} V + Ff$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \theta \\ \dot{\theta} \\ i \end{bmatrix}$$

- $\theta$ : angle
- *i* : armature current
- V:volatage
- J: moment of intertia of the rotor
- *b* : motor viscous friction constant

9

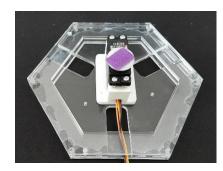

- *K* : motor torque constant
- *R* : electric resistance
- L: electric inductance
- *F* : fault matrix
- f : fault



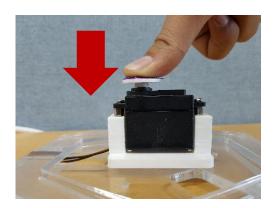
# **Fault Modeling and Residual Design**

- Fault modeling
  - Physically a load torque that acts on the inertia of the motor
- Residual Design
  - Parameter estimation from output error (Luenberger observer)

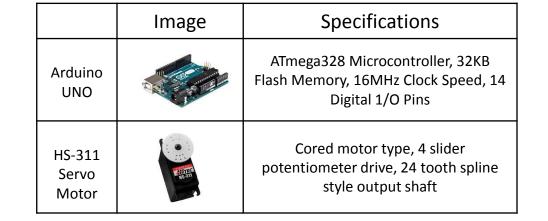
| Fault                                           | Observer                                          | Residual                         |
|-------------------------------------------------|---------------------------------------------------|----------------------------------|
| $F = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$ | $\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$ | $y - \hat{y} = C\Phi\theta$      |
| f(t): General Fault                             | $\hat{y} = C\hat{x}$                              | $\Phi$ : fault transition matrix |




- Monitoring Systems for Robot Diagnosis
- Prognostics and Health Management (PHM) for robot
- Simulation Study
  - Model-based Fault Detection and Isolation (FDI)
- Servo Motor Demonstration and Comparison
  - Model-based FDI
  - Unsupervised Learning
- Conclusion

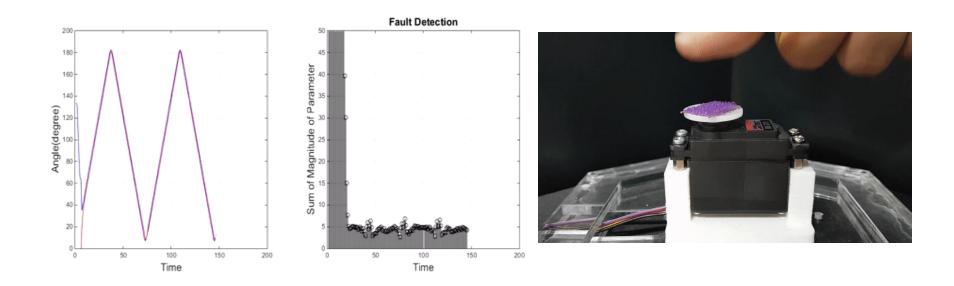



## **Demo Specifications**


- System configuration
  - Arduino UNO
  - Servo motor



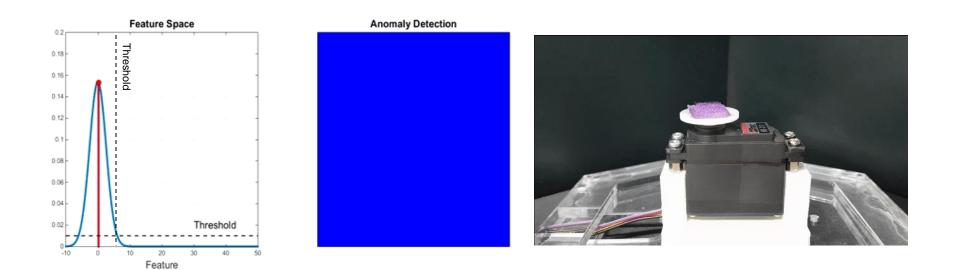
- Load generation
  - Anomaly is induced through manual press




| Servo Motor Testbed |                                      |  |
|---------------------|--------------------------------------|--|
| Operations          | Repetitive movement (0 - 180 degree) |  |
| Sensor              | Internal encoder                     |  |
| Sample Rate         | 50 Hz                                |  |

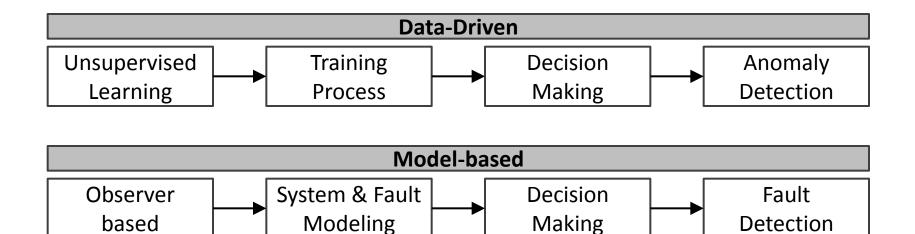


#### **Demo for Model-based FDI**

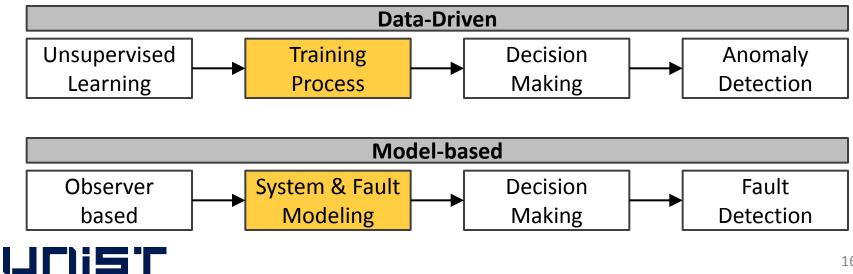

• Residual = sum of magnitude of parameter






## **Demo for Unsupervised Data-driven Method**

- Unsupervised Learning
  - Selected Feature: u[k] y[k]
  - Normal state training: Gaussian distribution
  - Decision Making: Mahalanobis distance

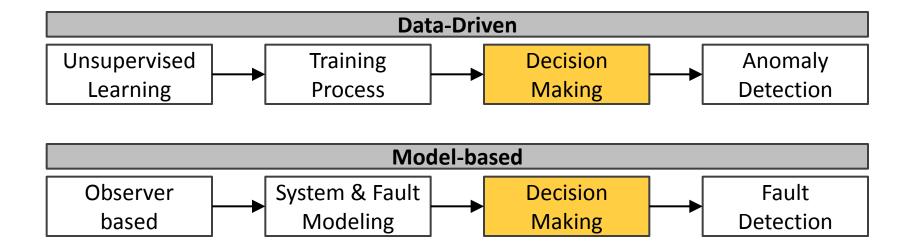






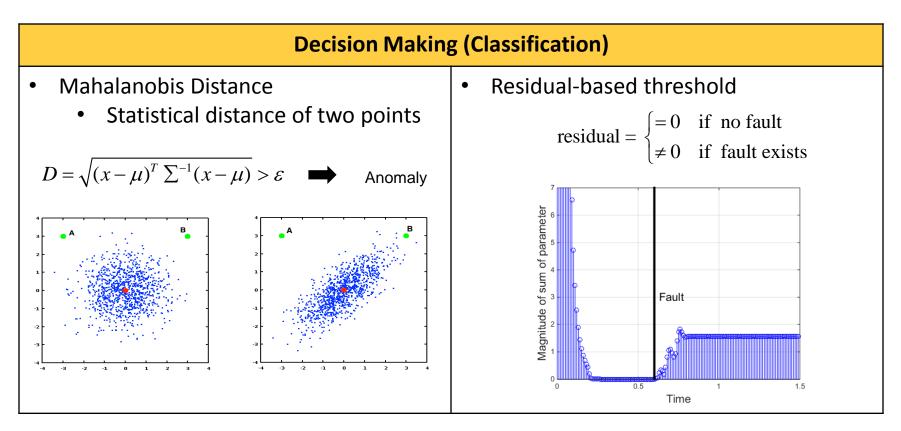





- Data-driven methods
  - Normal states based on feature
- Model-based methods
  - Normal states based on residual

| <ul> <li>Acquire normal data</li> <li>Feature extraction         <ul> <li>Represents normal state</li> <li>Normal state cluster in feature space</li> </ul> <ul> <li>feature3</li> <li>feature3</li> <li>Fault Modeling</li> <li><math>f[k] = \sum_n R_{n+} e^{j\alpha_{n+}} e^{j(n\omega)k} + R_{n-} e^{j\alpha_{n-}} e^{-j(n\omega)k}</math></li> <li>Residual Design</li> </ul> </li> </ul> | Training Process                                                                                                                                                                                                                    | System & Fault Modeling                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data Feature $f_{\text{resture}}$ $f_{\text{resture}}$ $f_{\text{resture}}$ $f_{\text{resture}}$ $residual = \begin{cases} = 0 & \text{if no fault} \\ \neq 0 & \text{if fault exists} \end{cases}$                                                                                                                                                                                            | <ul> <li>Acquire normal data</li> <li>Feature extraction         <ul> <li>Represents normal state</li> <li>Normal state cluster in feature space</li> </ul> </li> <li>India Feature         <ul> <li>Feature</li> </ul> </li> </ul> | • System representation<br>x[k+1] = Ax[k] + Bu[k] $y[k] = Cx[k]$ • Fault Modeling<br>$f[k] = \sum_{n} R_{n+} e^{j\alpha_{n+}} e^{j(n\omega)k} + R_{n-} e^{j\alpha_{n-}} e^{-j(n\omega)k}$ • Residual Design |




- Classify the state
  - based on the similarity of the predefined normal state
- Similarity can be represented differently





- Classify the state
  - based on the similarity of the predefined normal state
- Similarity can be represented differently





## Conclusion

- Importance of robot diagnosis has increased
  - More robots are being adopted
  - Servo motors are the key component of robots
- Anomaly detection and fault detection
  - Unsupervised learning (Mahalanobis distance)
  - Model-based fault detection (Observer-based residual)

|                       | Data-driven                                            | Model-based                                                                                        |
|-----------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Training/<br>Modeling | • Define normal state                                  | x[k+1] = Ax[k] + Bu[k] + Ff[k] $y[k] = Cx[k]$                                                      |
| Feature/<br>Residual  | u[k] - y[k]                                            | $y[k+1] - \hat{y}[k+1]$                                                                            |
| Decision<br>Making    | $D = \sqrt{(x-\mu)^T \sum^{-1} (x-\mu)} > \varepsilon$ | residual = $\begin{cases} = 0 & \text{if no fault} \\ \neq 0 & \text{if fault exists} \end{cases}$ |

