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Industrial Robots 

• Increased robot usage on factory 

 

 

 

 

 

 

 

• Breakdown of robot 
– 2015 GM Russia Operation Breakdown for 2 Months 

• Losses over $100 million  

• Approximately $1.6 million a day 
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• Key component 

– Servo motor 

 

• Dynamic movement (6-axis) 

 

 

Prognostics and Health Management (PHM) 
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Prognostics and Health Management (PHM) 

• Difficult to attach sensors due to dynamic movement of the arm 
– Mostly existing instrumentation are used (Encoder, Torque) 

• In may cases, failure data is not available 
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DC Motor Position: System Modeling 

• System representation in state space 
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http://ctms.engin.umich.edu/CTMS/index.php?example=MotorPosition&section=SystemModeling 
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Fault Modeling and Residual Design 

• Fault modeling 

– Physically a load torque that acts on the inertia of the motor 

• Residual Design 

– Parameter estimation from output error (Luenberger observer) 
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Image Specifications 

 
Arduino 

UNO 

ATmega328 Microcontroller, 32KB 
Flash Memory, 16MHz Clock Speed, 14 

Digital 1/O Pins 

 
HS-311 
Servo 
Motor 

Cored motor type, 4 slider 
potentiometer drive, 24 tooth spline 

style output shaft 

Demo Specifications 

• System configuration 
– Arduino UNO 

– Servo motor 

 

 

 

 

 

• Load generation 
– Anomaly is induced through manual press 
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Servo Motor Testbed 

Operations Repetitive movement (0 - 180 degree)  

Sensor Internal encoder 

Sample Rate 50 Hz 



Demo for Model-based FDI 

• Residual = sum of magnitude of parameter 
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• Unsupervised Learning 
– Selected Feature:  

– Normal state training:  Gaussian distribution 

– Decision Making: Mahalanobis distance 

Demo for Unsupervised Data-driven Method 
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Data-driven vs. Model-based 
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Fault: Physical Defect 

System 

Data-driven vs. Model-based 
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• Data-driven methods  

– Normal states based on feature 

• Model-based methods  

– Normal states based on residual 

Data-driven vs. Model-based 
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Training Process System & Fault Modeling 

• Acquire normal data 
• Feature extraction 

• Represents normal state 
• Normal state cluster in feature space 

 
 
 

• System representation 
 
 
 

• Fault Modeling 
 

 
 

• Residual Design 
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Data-driven vs. Model-based 

• Classify the state  
– based on the similarity of the predefined normal state 

• Similarity can be represented differently  
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• Classify the state  
– based on the similarity of the predefined normal state 

• Similarity can be represented differently  

Data-driven vs. Model-based 
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Decision Making (Classification) 

• Mahalanobis Distance 
• Statistical distance of two points 

 
 

• Residual-based threshold 
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Conclusion 

• Importance of robot diagnosis has increased  

– More robots are being adopted 

– Servo motors are the key component of robots 

• Anomaly detection and fault detection 

– Unsupervised learning (Mahalanobis distance) 

– Model-based fault detection (Observer-based residual) 
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