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Industrial Robots

* Increased robot usage on factory
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Figure 4.2 Annual supply of industrial robots
2013-2014 and forecast for 2015-2018
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* Losses over $100 million
» Approximately $1.6 million a day
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Prognostics and Health Management (PHM)
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* Key component

— Servo motor

* Dynamic movement (6-axis)
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Prognostics and Health Management (PHM)

 Difficult to attach sensors due to dynamic movement of the arm

— Mostly existing instrumentation are used (Encoder, Torque)

* In may cases, failure data is not available
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DC Motor Position: System Modeling

* System representation in state space
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: motor viscous friction constant
: motor torque constant

- electric resistance

- electric inductance

- fault matrix

- fault
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Fault Modeling and Residual Design

* Fault modeling

— Physically a load torque that acts on the inertia of the motor

* Residual Design

— Parameter estimation from output error (Luenberger observer)

Fault
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Residual

F=[0 1 0]
f (t) : General Fault
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Demo Specifications

* System configuration
— Arduino UNO
— Servo motor

* Load generation

Specifications
dui ATmega328 Microcontroller, 32KB
Arduino Flash Memory, 16MHz Clock Speed, 14
UNO Digital 1/0 Pins
HS-311 Cored motor type, 4 slider
Servo potentiometer drive, 24 tooth spline
Motor style output shaft

— Anomaly is induced through manual press

Servo Motor Testbed

Operations Repetitive movement (0 - 180 degree)
Sensor Internal encoder
Sample Rate 50 Hz
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Demo for Model-based FDI

e Residual = sum of magnitude of parameter

Fault Detection
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Demo for Unsupervised Data-driven Method

* Unsupervised Learning

— Selected Feature: u[k]- y[k]
— Normal state training: Gaussian distribution

— Decision Making: Mahalanobis distance

Ancemaly Detection

Feature Space

ploysaiyL

Threshold 1

Fealure
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Data-driven vs. Model-based
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Data-driven vs. Model-based

Data-driven

Feature

Anomaly Detection

Classification

Training Process

_

| Fault: Physical Defect |

.

>

Model-based

Residual

Fault Detection

Fault Isolation

Modeling Process

UMNST

Data-Driven
Unsuper.wsed Training Deaspn Anomgly
Learning Process Making Detection
Model-based
Observer System &. Fault DECIS.IOFI FauI’F
based Modeling Making Detection

16




Data-driven vs. Model-based

e Data-driven methods
— Normal states based on feature

* Model-based methods
— Normal states based on residual

Training Process

System & Fault Modeling

e Acquire normal data
* Feature extraction
* Represents normal state
* Normal state cluster in feature space

Time Signal
i .M

Data

A

Feature3

System representation
X[k +1] = Ax[k]+ Bu[k]
y[k] = Cx[K]

Fault Modeling

f [k] — Z Rn+ejan+ej(na))k + Rn_e jan—e_j(nw)k
n

Residual Design

=0 if no fault

residual = ] _
=0 if fault exists
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Data-driven vs. Model-based

* Classify the state
— based on the similarity of the predefined normal state

* Similarity can be represented differently
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Data-driven vs. Model-based

* Classify the state
— based on the similarity of the predefined normal state

* Similarity can be represented differently

Decision Making (Classification)

 Mahalanobis Distance e Residual-based threshold
 Statistical distance of two points —0 if no fault

=0 if fault exists
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Conclusion

* Importance of robot diagnosis has increased

— More robots are being adopted

— Servo motors are the key component of robots

* Anomaly detection and fault detection

— Unsupervised learning (Mahalanobis distance)

— Model-based fault detection (Observer-based residual)

Data-driven Model-based
* Define normal state
Training/ M X[k +1] = Ax[k]+ Bu[Kk] + Ff [K]
Modeling (L
yIK] = CX(K]
Resdun ulk] - yik] Ik +1] - Yk +1]
ecision - : =0 if no fault
?\/Iaking D= \/(X —u) X x—p) > ¢ residual = {;t 0 if fault exists
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