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Abstract

Intermolecular contacts between integrin LFA-1 (aLb2) and ICAM-1 derive solely from the integrin aL I domain and the first
domain (D1) of ICAM-1. This study presents a crystal structure of the engineered complex of the aL I domain and ICAM-1 D1.
Previously, we engineered the I domain for high affinity by point mutations that were identified by a directed evolution
approach. In order to examine aL I domain allostery between the C-terminal a7-helix (allosteric site) and the metal-ion
dependent adhesion site (active site), we have chosen a high affinity variant without mutations directly influencing either
the position of the a7-helix or the active sites. In our crystal, the aL I domain was found to have a high affinity conformation
to D1 with its a7-helix displaced downward away from the binding interface, recapitulating a current understanding of the
allostery in the I domain and its linkage to neighboring domains of integrins in signaling. To enable soluble D1 of ICAM-1 to
fold on its own, we also engineered D1 to be functional by mutations, which were found to be those that would convert
hydrogen bond networks in the solvent-excluded core into vdW contacts. The backbone structure of the b-sandwich fold
and the epitope for I domain binding of the engineered D1 were essentially identical to those of wild-type D1. Most
deviations in engineered D1 were found in the loops at the N-terminal region that interacts with human rhinovirus (HRV).
Structural deviation found in engineered D1 was overall in agreement with the function of engineered D1 observed
previously, i.e., full capacity binding to aL I domain but reduced interaction with HRV.
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Introduction

Integrins are noncovalently associated ab heterodimeric cell

surface receptors that mediate cell-cell and cell-extracellular

matrix adhesions, signaling bidirectionally across the plasma

membrane. Integrins play important roles in development,

immune cell trafficking and responses, and homeostasis [1,2,3].

One of the major leukocyte integrins is the lymphocyte function-

associated antigen (LFA)-1, which provides the interactions

necessary for immunological synapse formation and adhesion to

endothelial cells [4]. Ligands of LFA-1 include intercellular

adhesion molecules (ICAMs; ICAM-1, -2, -3, -4, and -5) [5] and

junctional adhesion molecule (JAM)-1 [6], both of which are the

members of the immunoglobulin superfamily (IgSF) receptors. As

one of the most biologically important ligands for LFA-1, ICAM-1

is expressed at a low constitutive level in diverse types of cells and

tissues, while its expression is greatly upregulated in response to

inflammation [7] and in some tumors and their stroma

[8,9,10,11,12,13,14]. The interaction of LFA-1 and ICAM-1 is

contained within the single domains called the a I domain in LFA-

1 and the first N-terminal domain (D1) of ICAM-1. ICAM-1 is

also subverted as a receptor for human rhinovirus (HRV): the

epitopes for both HRV and LFA-1 are within D1, yet they are

distinct [15].

Previous structural studies have indicated that the I domains of

both a and b chains exhibit low to high affinities to their ligands

[16,17]. Distinct conformational changes have been observed

between the top of the I domains known as the metal ion-

dependent adhesion site (MIDAS) and the C-terminal a-helix

(designated as a7-helix), a molecular coupling characterized as

‘allostery’. The displacement of the a7-helix (allosteric site)

‘downward’ (with respect to the top defined as the binding

interface of the I domain with ligands) has been hypothesized to

cause a change in the coordination to the metal ion of the residues

in the MIDAS (active site), leading to a higher affinity

conformation [18]. For integrins containing I domains in the a
subunits, the downward ‘pull’ of the a7-helix is coupled to global

conformational rearrangements of integrins, and more specifically,

to the opening of the integrin headpiece and the separation of a
and b subunits at the plasma membrane [19]. Structural change in
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the integrin is linked to its bidirectional cell signaling across the

plasma membrane, termed ‘‘outside-in’’ and ‘‘inside-out’’ signaling

[1]. The LFA-1 a I domain is functionally expressed in isolation,

but is dominantly in a low affinity conformation to physiologic

ligands. A structural linkage between the MIDAS and the a7-

helix, i.e. allostery in a I domains, has been demonstrated by

rationally designed mutational studies [17,20] and by a molecular

simulation study [21]. However, no previous crystal structures of a
I domains in complex with physiological ligands were obtained

with the native sequence in the a7-helix and the residues in

contact with the a7-helix. Compared to the rationally designed

activating mutations in the LFA-1 a I domain, we previously

reported an application of directed evolution to select active I

domains from a library through a selective pressure for binding to

ICAM-1 [22]. Several point mutations away from the allosteric

site within and in the vicinity of the a7-helix were identified, which

induced higher affinity to ICAM-1.

The ectodomain of ICAM-1 contains five Ig-like domains with

the first domain D1 solely responsible for interactions with LFA-1

and HRV. The binding sites in D1 for LFA-1 and HRV, however,

are distinct. The loops at the N-terminal face of D1 interact with

HRV by docking into a region known as the canyon [15,23],

whereas the residues within the b-strands make contact with the I

domain [17]. Despite the modular nature of many IgSF domains,

D1 does not fold on its own unless it is expressed with the second

domain D2 [15,24]. In an attempt to achieve a physiologic fold,

we have previously engineered D1 by directed evolution [25]. A

set of extensive and concurrent mutations in D1 were necessary to

express D1 on its own that is competent for binding to the LFA-1 I

domain and conformation-specific antibodies. We have previously

noted that D1 contains a hydrogen bond network in the core of

the domain and that the mutations selected for the native

conformation were mainly those converting hydrogen bond

interactions to hydrophobic, van der Waals (vdW) contacts.

Engineered D1 retained an interaction with the I domain,

comparable to the wild-type ICAM-1. However, full-length

ICAM-1 containing the mutations found in D1 exhibited lower

binding to HRV [25], implying that conversion of the hydrogen

bond network into vdW contacts may be responsible for reduced

interaction with the virus.

Here we report the crystal structure of the complex between the

engineered LFA-1 I domain and ICAM-1 D1. Distinct from the

previous studies [17,20,26], we used a high-affinity I domain

mutant with one substitution (F265S), while preserving the native

sequence for the residues that are within or in direct contact with

the a7-helix. Despite the relatively low resolution of the structure,

we were able to establish that the a7-helix of the I domain in

complex with ICAM-1 D1 was indeed displaced downward,

comparable to the open conformations previously observed in aM

and a2 I domains [27,28]. This recapitulates structural, allosteric

linkage between the MIDAS and the position of a7-helix.

Furthermore, the backbone structure of bacterially-expressed

ICAM-1 D1, which contains many mutations and is devoid of

molecular contacts with D2, was found to be closely superimpos-

able to the previously solved D1 structures within D1D2 fragments

expressed in mammalian systems.

Results

Structural Evidence for Allosteric Linkage between the
MIDAS and the Position of the a7-helix in the LFA-1 I
Domain

Molecular contacts with the ligands by integrins, which contain

the inserted or I domain in the a subunit, are contained solely

within the I domain. In an inside-out signaling, a cascade of intra-

and inter-domain conformational change occurs that propagates

intracellular signals to ultimately the activation of the a I domain:

a transition pathway follows the separation of a and b subunits at

the plasma membrane, swing-out motion of the hybrid domain,

activation of the I domain present in b subunit, and a final step of

the activation of I domain in the a subunit (Fig. 1A&B). In the

process of integrins engaging with their ligands, the downward

‘pull’ of the a7-helix located at the C-terminal end of the a I

domain switches the MIDAS from low to high affinity conforma-

tion. To obtain a complex structure of the I domain with the

ligands, aL I domain, which maintains a modular function in

isolation, has been engineered to high affinity by mutations, such

as a pair of cysteines (K287C/K294C) to lock the a7-helix in an

active conformation [17] or double mutations (F265S/F292G)

that were identified by a directed evolution approach [22]. In an

attempt to examine a physiologically attainable, high affinity

conformation of the a7-helix with the least amount of perturba-

tion, we chose the I domain with single substitution of Ser for Phe-

265, a position located within b5-a6 and is not in direct contact

with the residues in the a7-helix (Fig. 1C & Fig. 2). ICAM-1 D1

was previously engineered with seven mutations to achieve a

native fold on its own with the affinity to the I domain comparable

to that of the wild-type ICAM-1 D1D2 or D1-D5 [25]. The

complex structure shows docking of Glu-34 in ICAM-1 D1 to a

divalent metal ion (Mg2+) of the MIDAS (Fig. 1C), identical to the

previous integrin-ligand complex structures [17,20,26,28]. Even

with the native sequence in the a7-helix and its preceding b6-a7

loop, the I domain was found in an open conformation with the

a7-helix positioned downward, away from the closed state found

in the wild-type (Fig. 1D&E). The backbone structure of the b6-

strand and the a7-helix shown with electron density was found in

the open state (Fig. 1D). The b6-strand and the a7-helix contain

three hydrophobic residues, Leu-289, Phe-292, and Leu-295,

which in concert determine the position of the a7-helix (open,

intermediate, and closed) and the corresponding low or high

affinity conformations of the MIDAS. Compared to the previous

structures of the aM and a2 I domains, the aL I domain in our

crystal structure exhibited a comparable extent of downward

displacement of the a7-helix (Fig. 1E).

In contrast to one or two ICAM-1 D1D2 molecules or

complexes per asymmetric unit (1MQ8, 1IAM, and 1IC1),

notably a total of 14 complexes per asymmetric unit with a large

unit cell dimension were found in our structure (Fig. 1F & Table 1).

This may be partly ascribed to the interaction between two D1

fragments at the C-terminal face (indicated with dotted circles in

Fig. 1F), which is naturally buried if D2 is present. However, the

structural deviation (root-mean-square deviation (RMSD)) of all

14 complexes from each other was less than 0.41 Å. The largest

deviations among the 14 complexes were found at the a7-helix of I

domain (RMSD = 0.56 Å) and the loops connecting b-strands at

the N-terminal face of ICAM-1 D1 (RMSD = 0.67 Å). The loops

at the N-terminal face of ICAM-1 are also the regions that varied

most among all previous crystal structures either in complex with

aL I domain or on its own (Fig. 1G).

Comparison with the Previous Structures of High-affinity
LFA-1 I Domain Variants in Complex with Physiologic
Ligands

The LFA-1 I domain has previously been cocrystallized with

ICAM-1 D1D2 [17], ICAM-3 D1 [20], and ICAM-5 D1D2 [26]

(Fig. 2). All of the I domain structures were closely superimposable

at the structurally invariant central b-sheet, with most deviations

found in the b5-a6 loop, b6-a7 loop, and a7-helix. The affinity of

Complex Structure of ICAM-1 D1 and LFA-1 I Domain
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the I domain to ICAM-5 was at least 10-fold weaker than to

ICAM-1, and the I domain with two point mutations of F265S/

F292G were necessary to form a stable complex for crystallization

(Fig. 2A) [26]. However, the a7-helix was found flipped upward

pivoting on Gly-292 in the b6-a7 loop and the vacated space was

then occupied by the a7-helix belonging to a neighboring I

domain within the crystal unit (Fig. 2A). This unnatural

conformation of the a7-helix would be attributed to a greater

flexibility in dihedral angles along the peptide backbone around

Gly substituted for Phe-292. However, the backbone structure

excluding the a7-helix (Asn-129 to Leu-289) of the F265S/F292G

mutant was closely superimposable (0.6 Å RMSD) to the I domain

containing only F265S. In complexes with ICAM-1 D1D2 and

ICAM-3 D1, the I domains contained substitutions of two

cysteines, which were introduced to lock the a7-helix in the

intermediate (L161C/F299C) and the open (K287C/K294C)

positions (Fig. 2B&C) [17,20]. Compared to these disulfide bridge

mutants, the b5-a6 loop (Gly-262 - Glu-272) of our structure was

more closely superimposable to that in the high affinity mutant

(RMSD = 1.8 Å) than that in the intermediate affinity mutant

(RMSD = 3.1 Å) (Figures 2B and 2C). At the same time, the b6-a7

loop (Lys-276 - Val-286) of our structure was also more closely

Figure 1. Complex structure of engineered aL I domain and ICAM-1 D1. (A&B) Schematic drawings of the integrin headpiece, denoting intra-
and inter-domain rearrangements during the engagement of LFA-1 with ICAM-1. A structural transition from low (A) to high affinity conformation (B)
involves downward displacement of the a7-helix, shape change in metal-ion coordination sites, and swing-out movement of the hybrid domain.
SyMBS = synergistic metal binding site; MIDAS = metal-ion dependent adhesion site; ADMIDAS = adjacent to MIDAS. (C) Ribbon diagram of the
engineered aL I domain (pale yellow), containing a substitution of F265S, in complex with the engineered domain 1 (D1) of ICAM-1 (light purple). The
residues coordinating to the metal ion in the MIDAS, Ser-139, Ser-141, and Thr-206 in I domain and Glu-34 in ICAM-1 D1 are shown in stick models.
The Mg2+ ion is shown as a pink sphere. (D) The electron density map, drawn together with cartoon or stick models, shows an open conformation of
the b6-strand and the a7-helix. The three hydrophobic residues (Leu-289, Phe-292, and Leu-295; cyan) are shown in stick models. (E) In comparison to
the previous open structures of the I domains of different a subunits, aM (1IDO; blue) [27] and a2 (1DZI; green) [28], the a7-helix in our structure
(3TCX; magenta) shows a comparable extent of downward displacement, away from the closed structure seen in the wild-type aL I domain (3F74;
yellow) [44]. (F) Ribbon diagrams of 14 complexes found in an asymmetric unit. I domains are drawn in grey, and 14 molecules of D1 are drawn in
different colors for clarity. Dotted circles in cyan color indicate the interface between two C-terminal ends of D1. (G) Superimposed 14 complexes are
shown as Ca-traces.
doi:10.1371/journal.pone.0044124.g001

Complex Structure of ICAM-1 D1 and LFA-1 I Domain
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superimposable to the high affinity (RMSD = 1.5 Å to K287C/

K294C) than to the intermediate affinity mutant (RMSD = 2.7 Å

to L161C/F299C), implying that our structure adopted a high

affinity conformation in the absence of mutations directly altering

the position of the a7-helix.

Structure of the Engineered ICAM-1 D1 Single Domain in
Comparison with the Previous Wild-type Structures

Unlike the retention of a modular function of the I domain on

its own, functional expression of D1 by itself was achieved only

after the introduction of seven mutations (T2V/A, I10T, T23A,

P38V/A, P63V, S67A, T78A) into Gln1-Thr85 sequence,

identified by the combination of directed evolution and rational

design approaches [25]. Except for the mutations I10T and P38V,

the remaining five mutations were located in solvent-excluded

regions (Fig. 3A–C), converting polar residues into hydrophobic

ones. Substitutions of T2V, T23A, and S67A would disrupt the

hydrogen bond interactions near the N-terminal face of the

domain and create hydrophobic, vdW contacts (Fig. 3B). Substi-

tutions of P63V and T78A also create new vdW contacts in the

protein core (Fig. 3C). For future structural studies with HRV,

Gln-1 was mutated into Met to avoid an extra residue being

appended to the N-terminal [29], which has been shown to grossly

compromise ICAM-1 binding to HRV [30].

The backbone structure of the mutant D1 along the b-strands

was closely superimposable to D1 structures in wild-type D1D2

fragments (0.5 Å RMSD to 1IAM & 0.7 Å RMSD to 1IC1) or in

D1D2 in complex with the LFA-1 I domain (0.6 Å RMSD to

1MQ8) (Fig. 3D). The largest deviations of the mutant D1 from

the wild-type structures as well as the largest among the wild-type

Figure 2. Comparison with the previous complex structures of the aL I domain with ligands. (A–C) Superimposed to the current aL I
domain and ICAM-1 D1 structure (3TCX; magenta) are the previously solved complex structures of (A) high affinity (HA) aL I domain containingF265S/
F292G with ICAM-5 D1D2 (3BN3; yellow) [26], (B) intermediate affinity (IA) aL I domain containing L161C/F299C with ICAM-1 D1D2 (1MQ8; blue) [17],
and (C) high affinity (HA) aL I domain containing K287C/K294C with ICAM-3 D1 (1T0P; green) [20]. The acidic residue of the ICAMs (Glu-34 in ICAM-1
and Glu-37 in ICAM-3 and ICAM-5) docking into the I domains and the Mg2+ ions are shown as stick and spheres, respectively. The b5-a6 and b6-a7
loops are circled with dotted lines.
doi:10.1371/journal.pone.0044124.g002

Table 1. Data Collection and Refinement Statistics.

Space group P212121

a (Å) 104.0

b (Å) 166.3

c (Å) 299.4

Molecules/asymmetric unit 14

Resolution (Å) 50-3.6 (3.66-3.6)

Unique reflections 58846 (2499)

Completeness (%) 96.2 (83.9)

Rsym (%) 12.4 (48.6)

,I/s(I). 14.6 (1.7)

Redundancy 5.5 (2.2)

Rwork/Rfree (%) 21.8/23.4

Ramachandran Plot (favored/allowed/outlier %) 89.74/8.05/2.22

Average B factor (Å2)

ICAM-1 D1 120.3

LFA-1 I domain 185.6

ICAM-1 D1+ LFA-1 I domain 165.7

RMSD from ideal values

Bond lengths (Å) 0.013

Bond angles (u) 1.418

Number in parentheses are for the highest resolution shell.
doi:10.1371/journal.pone.0044124.t001

Complex Structure of ICAM-1 D1 and LFA-1 I Domain
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structures were found at the F–G, B–C, and D–E loops that

together create the contours of the N-terminal face (Fig. 3D &

Fig. 4). These loops are in close contact with HRV as seen in the

model structure generated from cryo-EM electron density (Fig. 3F)

[31,32,33]. From our previous observation that the mutations into

a triad forming a hydrogen bond network near the N-terminal face

were responsible for the reduced binding to HRV [25], it can be

speculated that our vdW forming mutations influenced the flexible

nature of the N-terminal loops [24], which may be necessary for

fitting into the viral capsid. We noted that Ca-Ca distances among

Thr-2, Thr-23, and Ser-67 in the wild-type structures were slightly

reduced in the D1 mutant with T2V, T23A, and S67A

substitutions (Fig. 3E). Substitutions with smaller side chains (i.e.,

T23A and S67A) in turn would have affected the interaction with

the neighboring residues, thus placing the B–C loop closer toward

the protein core (Fig. 3E). In contrast, the interface with the I

domain is contained within the region where the backbone of

engineered D1 was closely superimposable to that of the wild-type,

unaffected by the deviation seen in the loops (Fig. 3G & Fig. 4).

Discussion

Here we report the crystal structure of the complex of LFA-1 a I

domain and ICAM-1 D1, which have been engineered for high

affinity and native fold, respectively. A point mutation in the LFA-

1 I domain (F265S), which resulted in an increase in affinity to

ICAM-1 by ,10,000 fold over the wild-type I domain [22], was

sufficient to trigger allosteric shifting of the MIDAS into a high

Figure 3. Structural deviation in engineered ICAM-1 D1 and its implication in ICAM-1 interaction with LFA-1 and HRV. (A) Ca-traces of
engineered ICAM-1 D1 (magenta) and the wild-type D1 in D1D2 fragment (1IAM in yellow) are drawn with solvent-accessible surface plot (grey). (B)
Hydrogen bond network formed by Thr-2, Thr-23, Ser-67, and Ser-74 at the N-terminal protein core is shown in grey dotted lines with distances in Å
from the wild-type ICAM-1 structure (1IAM). Substitutions of T2V, S67A, and T23A in D1 are indicated. (C) A hydrogen bond between Pro-6 and Thr-78
is shown with a dotted line. Substitutions of P63V and T78A found in D1 are indicated. (D) D1 structures of the previous ICAM-1 D1D2 structures
(1IAM in yellow [15], 1IC1 in blue [24], 1MQ8 in green [17]) were superimposed to engineered D1 (3TCX in magenta). The loops, B–C, D–E, and F–G,
are circled with dotted lines. (E) The distances between the Ca atoms (dotted lines in magenta) of the triad Thr-2, Thr-23, and Ser-67, and the Ca
distance between Pro-28 to Thr-23 in previous structures are compared with those in D1 mutant. (F) The superimposed ICAM-1 structures with the
HRV were modeled based on the cryo-EM Ca coordinates of ICAM-1 D1D2 bound to HRV16 (1D3E [31] and 1AYM [45]). (G) The superimposed D1
structures are shown with the aL I domain shown as solvent-accessible surface.
doi:10.1371/journal.pone.0044124.g003

Complex Structure of ICAM-1 D1 and LFA-1 I Domain
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affinity metal ion coordination and a downward displacement of

the a7-helix. Using a comprehensive, systematic approach to

isolate mutations that would enhance protein fold, we have

previously engineered a functional ICAM-1 D1 on its own, fully

active in regard to its interaction with LFA-1 and less active with

HRV [25]. Although as many as seven mutations were necessary

to achieve functional D1 in isolation, our crystal structure revealed

little perturbation in the conformation of the b-strands that form

two faces of the b-sandwich structure. Despite extensive screening

and optimization of crystallization conditions, the engineered

complex in our study had repeatedly produced a large unit cell,

and failed to diffract to high resolution that would greatly aid in

more precise positioning of all the side-chains. However, all 14

complexes in the unit cell were highly superimposable with each

other as well as to the previous crystal structures, validating the

open conformation of the a7-helix of the I domain.

The structural basis of allosteric switching of the integrin I

domains to the conformation that is competent for ligand binding

has been studied extensively. Conformational allostery in the a7-

helix was first evidenced in the aM I domain structure with

glutamic acid of the neighboring I domain coordinating to the

metal ion in the MIDAS [27] and a concomittant downward

displacement of the a7-helix. This was in contrast to later

structures that revealed an upward position of the a7-helix and a

lack of ligation to the MIDAS [34]. The first complex structure of

the I domain with ligands was the a2 I domain bound to a collagen

mimetic peptide, exhibiting a similar downward position for the

a7-helix [28]. However, due to a low affinity of the wild-type LFA-

1 I domain to ligands, previous complex structures with ICAMs

required a pair of cysteines or the mutation (e.g., F292G) that

would directly influence the position of the a7-helix. With the

native sequence in the allosteric site around the a7-helix, the

crystal structure of the complex in this study further underscores

the intrinsic mobility of the a7-helix and how the I domain

allostery is coupled to a global conformation change of integrins.

ICAM-1 consists of five Ig-like domains in its extracellular

region, of which D1 is solely responsible for the molecular contacts

with the LFA-1 I domain and HRV. Despite an extensive set of

mutations in D1, which would convert mainly hydrogen bond

interactions into vdW contacts, the D1 mutant was found to retain

a native conformation of b-strands and b-sandwich fold with a

largest deviation localized to the loops that form the N-terminal

face of the Ig-like fold. Conformational variability of the loops in

D1, analogous to the complementarity determining region (CDR)

in antibodies [35], was also pronounced among the crystal

structures of the wild-type ICAM-1 D1D2 with as much as 1.1,

2.9, and 4.8 Å RMSD between Ca distances in B–C, D–E, and F–

G loops, respectively, whereas the rest of the domain differed by

less than 0.6 Å RMSD. Although the stable D1 mutant retained its

interaction with conformation-specific antibodies and the LFA-1 I

domain, the full-length ICAM-1 D1-D5 containing the mutations

found in D1 displayed lower binding to HRV [25]. In addition to

the proposed role of charge complementarity at the interface

between ICAM-1 and HRV [33,36], the flexible nature of the

loops [15,24] and hydrogen bond network present in the N-

terminal face of ICAM-1 may also be critical to recognition of over

90 different serotypes of rhinovirus by ICAM-1 [37]. The

information gained from the crystal structure of the engineered

ICAM-1 D1 and its comparison with the wild-type structures, i.e.,

the importance of hydrogen bond network in the protein core that

determines the conformation of the CDR-like loops for interaction

with HRV, may provide a further insight into designing a

functional D1 alone that retains full capacity binding to the virus.

Functional D1, due to its low-cost production from bacteria, may

be developed into a decoy antagonist to block LFA-1/ICAM-1

interactions and HRV binding to ICAM-1 expressing host cells.

Materials and Methods

Protein Production and Crystallization Condition
The LFA-1 I domain (Asn-129 - Tyr-307 with a mutation

F265S) and ICAM-1 D1 (Gln-1 - Thr-85 with mutations Q1M,

T2V, I10T, T23A, P38V, P63V, S67A, and T78A) were

expressed in E. coli BL21 (DE3) (Novagen), refolded, and purified

as previously described [25]. Equal molar of the I domain and D1

were mixed in the presence of 1 mM MgCl2 to form the complex,

purified by size exclusion and ion exchange columns, and

concentrated to 11 mg/ml in 50 mM HEPES, pH 7.2, 10%

glycerol. Protein complex was then mixed at equal volume with

the buffer for crystallization (0.1 M HEPES, pH 7.2, 10%

glycerol, 0.4 M Na formate, 0.4 M NaCl, 22% PEG 6000, and

Figure 4. Differences in Ca positions for the superimposed structures of ICAM-1 D1. Pair-wise Ca-Ca distances between wild-type ICAM-1
(1IAM, 1MQ8, and 1IC1) and engineered D1 (3TCX) are plotted. Also, Ca- Ca distances among the wild-type ICAM-1 structures are plotted (1IAM to
1MQ8, 1IC1 to 1IAM, and 1MQ8 to 1IC1). Putative interacting residues of ICAM-1 D1 with HRV16 capsid as well as the residues in close contact with
the aL I domain are indicated with brackets and corresponding residue numbers. Arrow bars denote the residues that form the b-strands in ICAM-1
D1.
doi:10.1371/journal.pone.0044124.g004
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5% DMSO). Crystals were grown in a sitting drop at room

temperature.

Data Collection and Structure Refinement
The diffraction data were collected at Cornell High Energy

Synchrotron Source (CHESS) Beamline F1 and processed with

HKL2000 [38] for integration and scaling. The initial structural

model was obtained by molecular replacement using PHASER

[39] in CCP4 program suite [40]. There were a total of 14

complexes in an asymmetric unit and these complexes were found

one by one [39] using the previous complex structures of ICAMs

and aL I domain (PDB codes 1MQ8 and 3BN3) as search models.

Then the structures were refined with Refmac5 [41]. During

refinement, 28 TLS (Translation/Libration/Screw) groups were

assigned (14 groups for each ICAM (all atoms selected) and 14

groups for each aL I domains (all atoms selected). Considering

relatively low diffraction resolution (3.6 Å), tight non-crystallo-

graphic symmetry (NCS) restraints were applied to the 14

complexes. The refined structures were proofread and corrected

with COOT [42] and refined again with Refmac5 until the

crystallographic R and Rfree factors converge to 21.8% and 23.4%,

respectively. The structural refinement using PHENIX [43]

produced essentially the same results with similar R and Rfree

values. The final structures were validated with PDB validation

server (www.pdb.org). The coordinates of our complex structures

have been deposited to the RCSB with the PDB code 3TCX.

Details in data collection and structure refinement can be found in

Table 1.

Structure Alignments and Analysis
Previous structures of the aM (1IDO) [27], a2 (1DZI) [28], and

aL (3F74) [44] I domains were superimposed to the aL I domain of

our structure (3TCX) based on residues in the a6-helix (aM: 278–

288; a2: 294–304; aL: 268–278) (Fig. 1C). Previous complex

structures of aL I domain with ligands, which included ICAM-1

D1D2 (1MQ8) [17], ICAM-3 D1 (1T0P) [20], and ICAM-5

D1D2 (3BN3) [26], were superimposed to the aL I domain of our

structure (3TCX) using residues in the central b-sheet (129–140,

164–181, 231–237). Previous wild-type ICAM-1 D1 structures

(1IAM [15], 1IC1 [24], and 1MQ8) were superimposed to the

ICAM-1 D1 of our structure (3TCX) using the residues in the b-

strands (2–5, 8–11, 15–23, 30–34, 38–42, 50–57, 61–68, and 73–

83). A model structure of ICAM-1 D1 bound to HRV16 was

constructed by aligning HRV16 coat protein (1AYM) [45] and

ICAM-1 structures (residues 1–80) to the corresponding cryo-

electron microscopy (cryo-EM) Ca coordinates of ICAM-1 D1D2

bound to HRV (1D3E) [31] (Fig. 3F). All the molecular graphic

figures were made using PyMOL (DeLano, W.L.).
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