The matrix equation

$$
\begin{gathered}
\left(\frac{1}{2}(-i \nabla+\vec{k})^{2}+V(\vec{r})\right)\left|u_{n, \mathbf{k}}(\vec{r})\right\rangle=E_{n}(\mathbf{k})\left|u_{n, \mathbf{k}}(\vec{r})\right\rangle \\
\left|u_{n, \mathbf{k}}(\vec{r})\right\rangle=\sum_{l=1}^{\infty} C\left(\vec{G}_{l}\right) e^{i \vec{G}_{l} \cdot \vec{r}}, \quad V(\vec{r})=V_{e x t}(\vec{r})+V_{H x c}[\rho(\vec{r})]=\sum_{l=1}^{\infty} V\left(\vec{G}_{l}\right) e^{i \vec{G}_{l} \cdot \vec{r}}
\end{gathered}
$$

- We don't want to play with the $\infty \times \infty$ dimension of the matrix.

The matrix equation, finite dimension

$$
\begin{gathered}
\left(\frac{1}{2}(-i \nabla+\vec{k})^{2}+V(\vec{r})\right)\left|u_{n, k}(\vec{k})\right\rangle=E_{n}(\mathbf{k})\left|u_{n, k}(\vec{r})\right\rangle \\
\left|u_{n, k}(\vec{r})\right\rangle=\sum_{l=1}^{N_{c}} C\left(\overrightarrow{\vec{l}}_{l}\right) e^{i \vec{G}_{l} \vec{r}}, V(\vec{r})=V_{e t t}(\vec{r})+V_{H x c}[\rho(\vec{r})]=\sum_{l=1}^{2 N_{c}} V\left(\vec{G}_{l}\right) e^{i G_{\vec{F}} \vec{r}}
\end{gathered}
$$

$\left[\begin{array}{llll}H_{11} & H_{12} & H_{13} & \ldots H_{1 N} \\ H_{21} & H_{22} & H_{23} & \ldots H_{2 N} \\ H_{31} & H_{32} & H_{33} & \ldots H_{3 N} \\ \ldots & \ldots & \ldots & \ldots \\ H_{N 1} & H_{N 2} & H_{N 2} & H_{N N}\end{array}\right]\left(\begin{array}{l}C_{1} \\ C_{2} \\ C_{3} \\ \ldots \\ C_{N}\end{array}\right)=E_{n}(\mathbf{k})\left(\begin{array}{l}C_{1} \\ C_{2} \\ C_{3} \\ \ldots \\ C_{N}\end{array}\right)$

- How can we make the matrix finite?.

The matrix equation, finite dimension

$$
\left|u_{n, \mathbf{k}}(\vec{r})\right\rangle=\sum_{l=1}^{N_{G}^{l}} C\left(\vec{G}_{l}\right) e^{i \vec{G}_{l} \cdot \vec{r}}, V(\vec{r})=V_{e x t}(\vec{r})+V_{H x c}[\rho(\vec{r})]=\sum_{l=1}^{2 N_{G}} V\left(\vec{G}_{l}\right) e^{i \vec{G}_{l} \cdot \vec{r}}
$$

- The Fourier basis waves are generated/provided within the energy cutoff, $E_{c u t}$

$$
\frac{\hbar^{2}}{2 m}|\vec{G}|^{2} \leq E_{c u t} \quad, \quad G_{\max }=\sqrt{2 E_{c u t}}
$$

- Which factor of the system determine $E_{c u t}$ or $G_{\max }$??

Convergence of Fourier series

$$
\left|u_{n, \mathbf{k}}(\vec{r})\right\rangle=\sum_{l=1}^{N_{G}} C\left(\vec{G}_{l}\right) e^{i \vec{G}_{l} \cdot \vec{r}} \quad, \quad V(\vec{r})=V_{e x t}(\vec{r})+V_{H x c}[\rho(\vec{r})]=\sum_{l=1}^{2 N_{G}} V\left(\vec{G}_{l}\right) e^{i \vec{G}_{l} \cdot \vec{r}}
$$

- Low- G component \rightarrow Long-range behavior, overall shape. For example, the component $G=0$?
- High- G component \rightarrow For the kink, sink of the potential

The matrix equation, finite dimension

$$
\left|u_{n, k}(\overrightarrow{\mathrm{r}})\right\rangle=\sum_{l=1}^{N_{c}} C\left(\vec{G}_{l}\right) e^{\vec{G}_{l}, \vec{r}}, V(\vec{r})=V_{e t t}(\vec{r})+V_{H x c}[\rho(\vec{r})]=\sum_{l=1}^{2 N_{G}} V\left(\vec{G}_{l}\right) e^{i \vec{G}_{l}, \vec{r}}
$$

- Which factor of the system determine $E_{c u t}$ or $G_{\max }$??

- How to do with the infinite depth of the potential ???

