Take-home Exam !!!

$>$ Everybody solves this problem.
$>$ Randomly select one you, who may present this in the nextweek class time !!!

Lattice and reciprocal lattice

$\vec{a}_{1}=(a, 0,0), \vec{a}_{2}=a(1 / 2, \sqrt{3} / 2,0), \vec{a}_{3}=(0,0, c)$

$$
\begin{aligned}
& \vec{b}_{1}=\frac{2 \pi}{V}\left(\vec{a}_{2} \times \vec{a}_{3}\right)=\frac{2 \pi}{a}\left(1,-\frac{1}{\sqrt{3}}, 0\right) \\
& \vec{b}_{2}=\frac{2 \pi}{V}\left(\vec{a}_{3} \times \vec{a}_{1}\right)=\frac{2 \pi}{a}\left(0, \frac{2}{\sqrt{3}}, 0\right)
\end{aligned}
$$

k-point sampling

$>$ In actual computation of solid states, we perform the Brillouin
zone integration through the discrete k-point sampling, in most of cases, we make uniform discrete k-point sampling.
$>$ Based on the Born-von-Karman boundary conditions, show that the number of sampled k-points in the Brillouin zone is the same as the number of cells in the position space.

Number cells = number of k-points

Consider a Bloch state $\psi_{\vec{k}}(\vec{r})$ with $\vec{k}=k_{1} \vec{b}_{1}+k_{2} \vec{b}_{2}+k_{3} \vec{b}_{3}$
The translation eigen state $\psi_{\vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi_{\vec{k}}(\vec{r})$
Born-von-Karman with very large $N_{1}: \psi_{\vec{k}}\left(\vec{r}+N_{1} \vec{a}_{1}\right)=e^{i \vec{k} \cdot N_{1} \vec{a}_{1}} \psi_{\vec{k}}(\vec{r})=\psi_{\vec{k}}(\vec{r})$
We have $k_{1}=\frac{l}{N_{1}}$.
In the same wave, we have discretely sampled k-points
$\vec{k}=\frac{l}{N_{1}} \vec{b}_{1}+\frac{m}{N_{2}} \vec{b}_{2}+\frac{n}{N_{3}} \vec{b}_{3}$

The volume per k-point

$$
d^{3} \vec{k}=\frac{1}{N_{1} N_{2} N_{3}} \vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)
$$

The number of sampled k-points

$$
N_{k-p o \text { int }}=\frac{\vec{b}_{1} \cdot\left(\vec{b}_{2} \times \vec{b}_{3}\right)}{d^{3} \vec{k}}=\frac{1}{N_{1} N_{2} N_{3}}
$$

What's wrong in this page ???

Implication

$>$ Suppose we have an insulator with N electron per unit cell.

$$
\left(\frac{1}{2}(-i \nabla+\vec{k})^{2}+V(\vec{r})\right) u_{n, \vec{k}}(\vec{r})=E_{n}(\vec{k}) u_{n, \vec{k}}(\vec{r})
$$

$>$ How many bands are occupied by the electron?

Implication

$>$ Think of construction of the density from the wavefunctions, the energy-momentum eigenfunctions, of an insulator.

$$
\rho(\vec{r})=\sum_{i=1}^{N_{k}} \sum_{n=1}^{N} W(\vec{k})\left|\psi_{n, \vec{k}}(\vec{r})\right|=\sum_{i=1}^{N_{k}} \sum_{n=1}^{N} W(\vec{k})\left|u_{n, \vec{k}}(\vec{r})\right|
$$

- What is N ?, what is $W(\vec{k})$???

