Hamiltonian with a translational symmetry

Translation Operator

>Now let us think of Hamiltonian with a periodic potential

$$
\begin{gathered}
V(\vec{r}+\vec{R})=V(\vec{r}) \\
\hat{H}=-\frac{1}{2} \nabla^{2}+V(\vec{r}) \\
\hat{H}(\vec{r}+\vec{R})=\hat{H}(\vec{r})
\end{gathered}
$$

Statements for symmetry

I. The Hamiltonian is invariant over the translation
II. The Hamiltonian commutes with the translation operator.

$$
\begin{gathered}
{[\hat{H}, \hat{T}(\vec{R})]=0, \hat{H} \hat{T}-\hat{T} \hat{H}=0} \\
\hat{T}^{-1} \hat{H} \hat{T}=\hat{H}
\end{gathered}
$$

$$
\hat{T}(\vec{R}) \hat{H}(\vec{r}) \psi(\vec{r})=\hat{H}(\vec{r}+\vec{R}) \psi(\vec{r}+\vec{R})=\hat{H}(\vec{r}) \psi(\vec{r}+\vec{R})=\hat{H} \hat{T}(\vec{R}) \psi(\vec{r})
$$

Good quantum number, stationary state

I. Once the operator commutes with the Hamiltonian, the eigenvalue of the operator can stay there stationary.
II. Say, at $t=0$, we have the eigenstates for translation, $\widehat{T}[\vec{R}]$, it keeps the same eigenvalue at $t>0$.

$$
\begin{gathered}
\hat{T}(\vec{R})\left|\psi_{\bar{k}}(t=0)\right\rangle=e^{i \vec{k} \cdot \vec{k}}\left|\psi_{\bar{k}}(t=0)\right\rangle \\
\left|\psi_{\bar{k}}(t)\right\rangle=\exp \left[-i \frac{\hat{H}}{\hbar} t\right]\left|\psi_{\bar{k}}(t=0)\right\rangle
\end{gathered}
$$

$\hat{T}(\vec{R})\left|\psi_{\vec{k}}(t)\right\rangle=\hat{T}(\vec{R}) \exp \left[-i \frac{\hat{H}}{\hbar} t\right]\left|\psi_{\vec{k}}(t=0)\right\rangle=\exp \left[-i \frac{\hat{H}}{\hbar} t\right] \hat{T}(\vec{R})\left|\psi_{\vec{k}}(t=0)\right\rangle=\exp \left[-i \frac{\hat{H}}{\hbar} t\right] e^{i \vec{k} \cdot \vec{k}}\left|\psi_{\vec{k}}(t=0)\right\rangle=e^{i \vec{k} \cdot \vec{R}} \exp \left[-i \frac{\hat{H}}{\hbar} t\right]\left|\psi_{\vec{k}}(t=0)\right\rangle$ We have $\hat{T}(\vec{R})\left|\psi_{\bar{k}}(t)\right\rangle=e^{i \vec{k} \cdot \vec{R}} \exp \left[-i \frac{\hat{H}}{\hbar} t\right]\left|\psi_{\bar{k}}(t=0)\right\rangle$

Good quantum number, stationary state

To analyze the Hamiltonian spectrum, when the Hamiltonian has a symmetry, it is much convenient to search for the simultaneous eigenstates.
II. For simultaneous eigenstates for $\widehat{T}[\vec{R}]$ with \widehat{H},

$$
\begin{gathered}
\hat{H}=-\frac{1}{2} \nabla^{2}+V(\vec{r}) \\
\left(-\frac{1}{2} \nabla^{2}+V(\vec{r})\right) e^{i \vec{k} \cdot \vec{r}} u(\vec{r})=E e^{i \vec{k} \cdot \vec{r}} u(\vec{r}) \\
\left(\frac{1}{2}(-i \nabla+\vec{k})^{2}+V(\vec{r})\right) u(\vec{r})=E u(\vec{r})
\end{gathered}
$$

Differential equation eigenvalue problem.

I. We want to determine the eigenvalue and the eigenfunction.

$$
\left(\frac{1}{2}(-i \nabla+\vec{k})^{2}+V(\vec{r})\right) u_{\vec{k}}(\vec{r})=E(\vec{k}) u_{\vec{k}}(\vec{r})
$$

II. The label for the discrete eigenspectral

$$
\left(\frac{1}{2}(-i \nabla+\vec{k})^{2}+V(\vec{r})\right) u_{n, \vec{k}}(\vec{r})=E_{n}(\vec{k}) u_{n, \vec{k}}(\vec{r})
$$

III. Look up the math text : the operator and BC

Differential equation eigenvalue problem.

III. Look up the math text : the operator and BC

$$
\begin{gathered}
\left(\frac{1}{2}(-i \nabla+\vec{k})^{2}+V(\vec{r})\right) u_{n, \vec{k}}(\vec{r})=E_{n}(\vec{k}) u_{n, \vec{k}}(\vec{r}) \\
u_{n, \vec{k}}(\vec{r}+\vec{R})=u_{n, \vec{k}}(\vec{r})
\end{gathered}
$$

Question

$>$ Suppose we have a cell-periodic charge density, say, $\rho(\vec{r})=$ $\rho(\vec{r}+\vec{R})$. Does the Coulomb potential have the same periodicity?

$$
V_{H}(\vec{r})=\int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime}
$$

$$
V_{H}(\vec{r})=V_{H}(\vec{r}+\vec{R}) ? ? ?
$$

