Lattice translation, primitive lattice vector

1. The lattice with the basis of single apple
2. Lattice vector

$$
\vec{R}=n \vec{a}_{1}+m \vec{a}_{2}+l \vec{a}_{3}
$$

3. Primitive lattice vector

$$
\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}
$$

Triangular lattice

Honeycomb = triangular lattice with two basis

For a lattice defined by $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$

1. Unit cell volume

$$
V=\vec{a}_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)
$$

2. The primitive lattice vectors for the reciprocal lattice

$$
\begin{aligned}
& \overrightarrow{b_{1}}=\frac{2 \pi}{V}\left(\vec{a}_{2} \times \vec{a}_{3}\right), \overrightarrow{b_{2}}=\frac{2 \pi}{V}\left(\vec{a}_{3} \times \vec{a}_{1}\right), \overrightarrow{b_{3}}=\frac{2 \pi}{V}\left(\vec{a}_{1} \times \vec{a}_{2}\right) \\
& \text { 3. Show that } \\
& \qquad \vec{a}_{i} \cdot \vec{b}_{j}=2 \pi \delta_{i, j}
\end{aligned} \quad \begin{array}{ll}
\vec{a}_{1} \cdot \vec{b}_{1}=? ? ? \\
\vec{a}_{1} \cdot \vec{b}_{2}=? ? ?
\end{array}
$$

Example: an orthorhombic lattice

$$
\left\{\begin{array}{l}
\overrightarrow{a_{1}}=a \hat{x} \\
\overrightarrow{a_{2}}=3 a \hat{y} \\
\overrightarrow{a_{3}}=a \hat{z}
\end{array}\right.
$$

$$
V=\overrightarrow{a_{1}} \cdot\left(\overrightarrow{a_{2}} \times \overrightarrow{a_{3}}\right)=3 a^{3}
$$

$\overrightarrow{b_{1}}=2 \pi \frac{3 a^{2}}{3 a^{3}}, \overrightarrow{b_{2}}=2 \pi \frac{a^{2}}{3 a^{3}}, \overrightarrow{b_{3}}=2 \pi \frac{3 a^{2}}{3 a^{3}}$
$\overrightarrow{b_{1}}=\frac{2 \pi}{a} \hat{x}, \quad \overrightarrow{b_{2}}=\frac{2 \pi}{3 a} \hat{y}, \quad \overrightarrow{b_{3}}=\frac{2 \pi}{a} \hat{z}$

$$
\begin{gathered}
\overrightarrow{a_{1}} \cdot \vec{b}_{1}=2 \pi \quad \vec{a}_{1} \cdot \vec{b}_{3}=0 \\
\overrightarrow{a_{1}} \cdot \vec{b}_{2}=0 \quad \vec{a}_{2} \cdot \vec{b}_{2}=2 \pi \\
\vdots \\
V \vec{a}_{i} \cdot \vec{b}_{j}=2 \pi \delta_{i j}
\end{gathered}
$$

$\vee \begin{aligned} & \left\{\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \overrightarrow{a_{3}}\right\} \\ & \vec{R}=n_{1} \overrightarrow{a_{1}}+n_{2} \overrightarrow{a_{2}}+n_{3} \overrightarrow{a_{3}}\end{aligned}$

$$
\begin{gathered}
\left\{\overrightarrow{b_{1}}, \overrightarrow{b_{2}}, \overrightarrow{b_{3}}\right\} \\
\vec{G}=l_{1} \overrightarrow{b_{1}}+l_{2} \overrightarrow{b_{2}}+l_{3} \overrightarrow{b_{3}}
\end{gathered}
$$

$$
\checkmark \overrightarrow{a_{i}} \cdot \overrightarrow{b_{j}}=2 \pi \delta_{i j}
$$

$$
\sqrt{\vec{R} \cdot \vec{G}=2 \pi\left(n_{1} l_{1}+n_{2} l_{2}+n_{3} l_{3}\right)}
$$

$$
=2 \pi \times(\text { integ }) \mathrm{r}
$$

(a lattice vector) - (a Reciprocal lattice vector) = integer multiple of 2π

We have three vectors

$\rho\left(\vec{r}^{\prime}\right)=\rho\left(\vec{r}^{\prime}+\vec{R}\right)$

1. Lattice vectors

$$
\vec{R}=n \vec{a}_{1}+l \vec{a}_{2}+m \vec{a}_{3}
$$

2. Reciprocal Lattice vectors

$$
\vec{G} n \vec{b}_{1}+l \vec{b}_{2}+m \vec{b}_{3}
$$

Fourier transformation,,
Fourier wavevector_=Reciprocal Lattice vector
3. Bloch vectors

$$
\vec{k}=\alpha \vec{b}_{1}+\beta \vec{b}_{2}+\gamma \vec{b}_{3}
$$

Lattice translation, primitive lattice vector

$$
\vec{R}=n \vec{a}_{1}+m \vec{a}_{2}+l \vec{a}_{3}
$$

Primitive unit cell, through the lattice translations, can fill out the space without overlap and without void.

Volume of unit-cell is defined above, but the shape of unit-cell can be arbitrary.

The basis of the lattice

Single apple

One apple and one grape

The basis of the lattice

Cubic lattice

(a)

(b)

(a) Simple Cubic Bravais lattice with the primitive cell of

$$
\overrightarrow{a_{1}}=a \hat{i}, \overrightarrow{a_{2}}=a \hat{j}, \overrightarrow{a_{3}}=a \hat{k}
$$

How many lattice points in the unit cell?

What is the lattice for the structure (c) ?

How many lattice points in the unit cell ?

Single apple

One apple and one grape

Face-centered Cubic

FCC Bravais lattice,
Remember it has one spherical symmetric object in the unit cell

Face-centered Cubic

$$
\overrightarrow{a_{1}}=a \hat{i}, \overrightarrow{a_{2}}=a \hat{j}, \overrightarrow{a_{3}}=a \hat{k}
$$

But the FCC structure can be described with a simple cubit lattice?

How many atoms are there in this SC cell?

Body-centered cubic

Triangular lattice

$$
\left|\mathbf{a}_{1}\right|=\left|\mathbf{a}_{2}\right|=a
$$

Honey Com

$$
\left|\mathbf{a}_{1}\right|=\left|\mathbf{a}_{2}\right|=a
$$

Example,

Choosing the following two set of coordinate, express the components of lattice vector and basis vector.

Honey Comb structure

Semiconductor

Diamond structure = FCC with two basis

FCC

Diamond structure = FCC with two basis

Using an appropriate set of coordinate, express the coordinate vectors for the basis atoms and lattice vector?
How many atoms do you have in the unit cell when you see it as a SC?
How many atoms do you have in the unit cell when you see it as a FCC lattice?

$$
\left\{\begin{array}{l}
\overrightarrow{a_{1}}=a \hat{x} \\
\overrightarrow{a_{2}}=a \hat{y} \\
\overrightarrow{a_{3}}=a \hat{z}
\end{array}\right.
$$

Simple Hexagonal Lattice

$$
\left\{\begin{array}{l}
\overrightarrow{a_{1}}=a \hat{x} \\
\overrightarrow{a_{2}}=a\left(\frac{1}{2} \hat{x}+\frac{\sqrt{3}}{2} \hat{y}\right) \\
\overrightarrow{a_{3}}=c \hat{z}
\end{array}\right.
$$

Hexagonal Close Pack (HCP)

Hexagonal Close Pack (HCP)

Regular tetrahedron

In high school mathematics class, you might have learned that the height of regular tetrahedron can be related to the length of edge.

$$
h=a \sqrt{2 / 3}
$$

Show that the $3^{\text {rd }}$ lattice length, perpendicular the to plane lattice, is

$$
c=a \sqrt{8 / 3}
$$

Hexagonal Close Pack (HCP)

$$
\begin{aligned}
& \overrightarrow{\tau_{1}}=0 \\
& \overrightarrow{\tau_{2}}=\frac{1}{3}\left(\overrightarrow{a_{1}}+\overrightarrow{a_{2}}\right)+\frac{1}{2} \overrightarrow{a_{3}}
\end{aligned}
$$

FCC and Close-Pack

$\overrightarrow{\tau_{1}}=0$
$\overrightarrow{\tau_{2}}=\frac{1}{3}\left(\overrightarrow{a_{1}}+\overrightarrow{a_{2}}\right)+\frac{1}{3} \overrightarrow{a_{3}}$

$$
\overrightarrow{a_{2}}=\left(\frac{a}{2}, \frac{\sqrt{3} a}{2}, 0\right)
$$

$$
\overrightarrow{\tau_{3}}=\overrightarrow{\tau_{2}}+\frac{1}{3}\left(\overrightarrow{a_{1}}+\overrightarrow{a_{2}}\right)+\frac{1}{3} \overrightarrow{a_{3}}=2 \overrightarrow{\tau_{2}}
$$

$$
\overrightarrow{a_{3}}=(0,0, c)
$$

FCC is a type of closed-pack structure, when you look it at from the [111] axis direction

FCC and Close-Pack

FCC is a type of closed-pack structure, when you look it at from the [111] axis direction

$$
\begin{aligned}
& \overline{D M}=\frac{\sqrt{3}}{2} a \\
& \overline{D H}=\frac{2}{3} \overline{D M}=\frac{\sqrt{3}}{3} a \\
& (\overline{A H})^{2}=(\overline{A D})^{2}-(\overline{D H})^{2} \\
& (\overline{A H})^{2}=a^{2}-\frac{1}{3} a^{2}=\frac{2}{3} a^{2} \\
& \therefore \overline{A H}=\sqrt{\frac{2}{3}} a
\end{aligned}
$$

Because FCC Structure has 3 layers,

$$
c=\sqrt{6} a
$$

$$
c=3 \overline{A H}
$$

$$
c=\sqrt{6} a
$$

