Day-1

- Brief overview of quantum mechanics
- Dipole approximation for light-matter interaction
- Schrodinger equation and Dirac equation
- Spin-orbit coupling

$$
\hat{H}_{S O C}=\frac{1}{2 m^{2} c^{2}}\left(\frac{\hbar}{2} \vec{\sigma}\right) \cdot(\nabla V(\mathbf{r}) \times \hat{\vec{p}})
$$

Pauli's recognition of the doublet

1. Besides the Rydberg series, Pauli and others well recognized that the level can be split, depending on the magnetic field

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi_{n}(\mathbf{r})=E_{n} \psi_{n}(\mathbf{r})
$$

$$
E_{n}=-\frac{m e^{4}}{2 \hbar^{2}} \frac{1}{n^{2}}
$$

Early recognition of the electron's spin

$$
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})+\vec{\mu} \cdot \mathbf{B}\right] \psi(\mathbf{r}, t)
$$

It might be possible to postulate the equation in terms of an intrinsic magnetic dipole, which seems to be quantized by a two state (spin up, spin down)

$$
\mu= \pm \frac{e \hbar}{2 m c}=\frac{e}{m c}\left(\pm \frac{\hbar}{2}\right)
$$

Magnetic polertial

Inctdent ramio trequer radiation.
$>$ Now let us consider the special relativity.
> The Lorentz-covariance of the matter wave equation?

Four-vector and Lorentz transformation

- Let's first think of the space-time coordinates and their transformation rules.

$$
\begin{aligned}
& x^{\mu}=(c t, \vec{x}) \rightarrow x^{\prime \mu}=\left(c t^{\prime}, \vec{x}^{\prime}\right) \\
& x^{\prime \mu}=\sum_{v}^{4} \Lambda_{v}^{\mu} x^{v}=\Lambda_{v}^{\mu} x^{v}
\end{aligned}
$$

- The Einstein's assertion of the invariance of speed of light requires that the following quantity should be invariant (i.e. being the four scalar) over the transformation.

$$
c^{2} t^{2}-\vec{x}^{2}=c^{2} t^{\prime 2}-\vec{x}^{\prime 2}
$$

Four-vector \& Minkowskii metrics

1. Contravariant four vector

$$
x^{\mu}=(c t, \mathbf{r}) \rightarrow x^{\prime \mu}=\Lambda_{\lambda}^{\mu} x^{\lambda}
$$

2. Minkowskii metrics

$$
g_{\mu \nu}=g^{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

3. Covariant four vector

$$
x_{\mu}=(c t,-\mathbf{r})=g_{\mu v} x^{v}
$$

Four-vector \& Minkowskii metrics

4. The inner product of two four vector be invariant, being the four scalar, over the Lorentz transformation.

$$
x \cdot y=x_{\mu} y^{\mu}=x_{\mu} g^{\mu \lambda} y_{\lambda}=x^{\lambda} y_{\lambda}
$$

5. Invariance of the scalar over the Lorentz transformation

$$
\begin{gathered}
x^{\prime \mu}=\Lambda_{\alpha}^{\mu} x^{\alpha}, y^{\prime \nu}=\Lambda_{\beta}^{v} y^{\beta} \\
x^{\prime \mu} y_{\mu}^{\prime}=x^{\prime \mu} y^{\prime \nu} g_{\mu \nu}=g_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v} x^{\alpha} y^{\beta}=x^{\alpha} y_{\alpha}=g_{\alpha \beta} x^{\alpha} y^{\beta}
\end{gathered}
$$

Lorentz transformation

- The matrix should be of

$$
g_{\mu \nu} \Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{v}=g_{\alpha \beta}
$$

Four vectors in E\&M

> 4-momentum

$$
p^{\mu}=\left(E / c, p_{x}, p_{y}, p_{z}\right)=(\gamma m c, \gamma m \vec{v}) .
$$

Note that the Four-scalar $p^{\mu} p_{\mu}=(\gamma m c)^{2}-(\gamma m v)^{2}=m^{2} c^{2}$
> 4-current and 4-potential

$$
A^{\mu}=\left(\phi / c, A_{x}, A_{y}, A_{z}\right) \quad j^{\mu}=\left(\rho c, j_{x}, j_{y}, j_{z}\right)
$$

4-gradient and 4-momentum

1. Four gradient

$$
\frac{\partial}{\partial x^{\mu_{k}}}=\left(\frac{\partial}{c \partial t}, \vec{\nabla}\right)=\partial_{\mu}, \quad \frac{\partial}{\partial x_{\mu}}=\left(\frac{\partial}{c \partial t},-\vec{\nabla}\right)=\partial^{\mu}
$$

The 4-gradient of the contravariant position transforms as a covariant 4-vector.

Four-momentum as a four vector

- Since the contravariant and covariant form of four-derivatives are available obviously, we may easily define the four-momenta.

$$
\begin{aligned}
& \hat{p}^{\mu}=i \hbar \frac{\partial}{\partial x_{\mu}}=i \partial^{\mu}=\left(i \partial_{t},-i \vec{\nabla}\right)=(\hat{H}, \hat{\vec{p}}) \\
& \hat{p}_{\mu}=i \hbar \frac{\partial}{\partial x^{\mu}}=i \partial_{\mu}=\left(i \partial_{t}, i \vec{\nabla}\right)=(\hat{H},-\hat{\vec{p}})
\end{aligned}
$$

Equations for the matter wave

- Schrodinger equation is the equation for the matter wave corresponding to Newtonian Energy-momentum relation. For example, for a free particle (the energy-momentum eigenstate)

$$
\begin{aligned}
& i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}= {\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}\right] \psi(\mathbf{r}, t)=\left[\frac{1}{2 m} \hat{\mathbf{p}}^{2}\right] \psi(\mathbf{r}, t) } \\
& \psi(\mathbf{r}, t)=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \\
& E=\hbar \omega=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}=\frac{1}{2 m} \mathbf{p}^{2}
\end{aligned}
$$

Equations for the matter wave

- Klein \& Gordon suggested the following form of matter wave equation

$$
-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}}=\left[-\hbar^{2} c^{2} \nabla^{2}+m^{2} c^{4}\right] \psi
$$

- To fit with the relativistic energy-momentum equation

For a free-particle energy momentum state $\psi(\mathbf{r}, t)=A e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$

$$
E=\hbar \omega=\mathbf{p}^{2} c^{2}+m^{2} c^{4}
$$

Equations for the matter wave

- To make a Lorentz-covariant matter wave equation, the equation must be linear in terms of four momentum, all linear in $\partial_{\mu}=\partial / \partial x^{\mu}$
- Dirac recognize that, to implement the relativistic energy-momentum relation $\left(E^{2}=p^{2} c^{2}+m^{2} c^{4}\right)$ into the matter wave from, in accordance with the Plank's quantized radiation ($\omega=E / \hbar$) and de Broglie ($\lambda=$ $2 \pi \hbar / p$),
- the vector wavefunction with multiple wavefunctions is inevitable.

The equation Dirac proposed

- Dirac intended to invent an equation with the first order in time by introducing four matrices and vector wave function.

$$
\left(\gamma^{\mu} \hat{p}_{\mu}-m c\right) \psi=0
$$

Is this four vector ?, and then $\gamma^{\mu} \widehat{\boldsymbol{p}}_{\mu}$ is four-scalar ? :

$$
\text { NO !!, Don't be confused. It is just the name of } 4 \times 4 \text { matrices. }
$$

- Later, we assign a transformation rule on ψ so that it successfully produces 4 -vector current density with a positive-definite density

$$
j^{\mu}=\overline{\psi \gamma} \gamma^{\mu} \psi, \quad \partial_{\mu} j^{\mu}=0
$$

Lorentz-covariant equation of motion

- Let us search for general attributes that the γ matrices should have.

$$
\left(\gamma^{\mu} \hat{p}_{\mu}+m c\right)\left(\gamma^{\lambda} \hat{p}_{\lambda}-m c\right) \psi=0, \quad\left(\gamma^{\mu} \gamma^{\lambda} \hat{p}_{\mu} \hat{p}_{\lambda}-m^{2} c^{2}\right) \psi=0
$$

- Since the momentum operators are commuting, $\left[\hat{p}_{\mu}, \hat{p}_{v}\right]=0$

$$
\begin{gathered}
\gamma^{\mu} \gamma^{\lambda} \hat{p}_{\mu} \hat{p}_{\lambda}=\gamma^{\lambda} \gamma^{\mu} \hat{p}_{\lambda} \hat{p}_{\mu}=\gamma^{\lambda} \gamma^{\mu} \hat{p}_{\mu} \hat{p}_{\lambda} \\
\left(\frac{1}{2}\left\{\gamma^{\mu}, \gamma^{\lambda}\right\} \hat{p}_{\mu} \hat{p}_{\lambda}-m^{2} c^{2}\right) \psi=0
\end{gathered}
$$

Clifford algebra

- Let's require to find

$$
\left(\gamma^{\mu} \gamma^{\lambda}+\gamma^{\lambda} \gamma^{\mu}\right)=2 g^{\mu \lambda}
$$

$$
\begin{aligned}
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=0 \text { for } \mu \neq v \\
& \left(\gamma^{0}\right)^{2}=1,\left(\gamma^{i}\right)^{2}=-1 \text { for } i=1,2,3
\end{aligned}
$$

- What are these four symbols ? $\gamma^{0}, \gamma^{1}, \gamma^{2}, \gamma^{3}$
- There are no representation of the Clifford algebra using 2×2 or 3×3 matrices.
- The simplest representation of the Clifford algebra is 4×4, but there are many representation with 4×4 matrices.

Block off-diagonal matrix

- Block 2x2 operations

$$
\left[\begin{array}{ll}
0_{2 \times 2} & A_{2 \times 2} \\
B_{2 \times 2} & 0_{2 \times 2}
\end{array}\right]\left[\begin{array}{ll}
0_{2 \times 2} & C_{2 \times 2} \\
D_{2 \times 2} & 0_{2 \times 2}
\end{array}\right]=\left[\begin{array}{cc}
A D & 0 \\
0 & B C
\end{array}\right]
$$

- Block transpose

$$
\left[\begin{array}{ll}
0_{2 \times 2} & A_{2 \times 2} \\
B_{2 \times 2} & 0_{2 \times 2}
\end{array}\right]^{T}=\left[\begin{array}{cc}
0 & B^{T} \\
A^{T} & 0
\end{array}\right]
$$

Chiral-Weyl representation

- Four matrices and the fifths

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & 1_{2} \\
1_{2} & 0
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right), \gamma^{5}=-i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
1_{2} & 0 \\
0 & -1_{2}
\end{array}\right)
$$

- Transpose-conjugate matrix

$$
\gamma^{0} \gamma^{\mu} \gamma^{0}=\left(\gamma^{\mu}\right)^{+}
$$

- [Proof] it is obvious for $\mu=0$

$$
\gamma^{0} \gamma^{i} \gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -\sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)
$$

Majorana representation

- To make every component complex number
$\gamma^{0}=\left(\begin{array}{cc}0 & \sigma_{2} \\ \sigma_{2} & 0\end{array}\right), \gamma^{1}=\left(\begin{array}{cc}i \sigma_{3} & 0 \\ 0 & i \sigma_{3}\end{array}\right), \gamma^{2}=\left(\begin{array}{cc}0 & -\sigma_{2} \\ \sigma_{2} & 0\end{array}\right), \gamma^{3}=\left(\begin{array}{cc}-i \sigma_{1} & 0 \\ 0 & -i \sigma_{1}\end{array}\right)$
- Show that the fifth

$$
\gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{cc}
\sigma_{2} & 0 \\
0 & -\sigma_{2}
\end{array}\right)
$$

Dirac-Pauli representation

- The gamma 4-vector

$$
\gamma^{0}=\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right), \quad \vec{\gamma}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
-\vec{\sigma} & 0
\end{array}\right), \gamma^{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

- The Dirac equation

$$
\gamma^{0}\left(\gamma^{0} \hat{p}_{0}-\vec{\gamma} \cdot \hat{\vec{p}}-m c\right) \psi=0, i \frac{\partial \psi}{c \partial t}=\left(\gamma^{0} \vec{\gamma} \cdot \hat{\vec{p}}+\gamma^{0} m c\right) \psi
$$

- Multiply γ^{0} on both sides

$$
\left(\gamma^{\circ} P_{0}-\vec{\gamma} \cdot \vec{p}-m c\right) \psi=0
$$

$$
i \frac{\partial}{\partial t} \psi=\left[c \vec{\alpha} \cdot \hat{\vec{p}}+m c^{2} \beta\right] \psi=0
$$

$$
\begin{aligned}
& \vec{\alpha}=\gamma^{0} \vec{\gamma} \\
& \vec{\gamma}=\gamma^{0} \vec{\alpha} \\
& \beta=\gamma^{0}
\end{aligned}
$$

Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

1. $\sigma_{i} \sigma_{j}=i \sum_{k} \varepsilon_{i j k} \sigma_{k}+\delta_{i j}$
2. $\left[\sigma_{i}, \sigma_{j}\right]=i \sum_{k} \varepsilon_{i j k} \sigma_{k}-i \sum_{k} \varepsilon_{j i k} \sigma_{k}=2 i \varepsilon_{i j k} \sigma_{k}$
3. $\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i, j}$
4. $\{\vec{A} \cdot \vec{\sigma}\}\{\vec{B} \cdot \vec{\sigma}\}=\sum_{i} A_{i} \sigma_{i} \sum_{j} B_{j} \sigma_{j}=\sum_{i, j} A_{i} B_{j} \sigma_{i} \sigma_{j}$

$$
\begin{aligned}
& =\sum_{i, j} A_{i} B_{j}\left[\delta_{i j}+i \sum_{k} \varepsilon_{i j k} \sigma_{k}\right]=\sum_{i} A_{i} B_{i}+i \sum_{k} \sum_{i, j}\left(\varepsilon_{i j k} A_{i} B_{j}\right) \sigma_{k} \\
& =\vec{A} \cdot \vec{B}+i \sum_{k}(\vec{A} \times \vec{B})_{k} \sigma_{k} \\
& =\vec{A} \cdot \vec{B}+i \vec{A} \times \vec{B} \cdot \vec{\sigma}
\end{aligned}
$$

Dirac-Pauli representation

- The Dirac equation for a free-particle

$$
\begin{gathered}
i \frac{\partial}{\partial t} \psi=\left[c \vec{\alpha} \bullet \hat{\vec{p}}+m c^{2} \beta\right] \psi=0 \\
\alpha^{i}=\gamma^{0} \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
\sigma^{i} & 0
\end{array}\right) \quad \beta=\gamma^{0}=\left(\begin{array}{cc}
1_{2} & 0 \\
0 & -1_{2}
\end{array}\right)
\end{gathered}
$$

Dirac-Pauli representation

- For a particle with a charge of q under a E\&M field

$$
i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t)=\left[c \vec{\alpha} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)+m c^{2} \beta+q \varphi(\mathbf{r}, t)\right] \psi(\mathbf{r}, t)
$$

Dirac equation

$$
i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t)=\left[c \vec{\alpha} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)+m c^{2} \beta+q \varphi(\mathbf{r}, t)\right] \Psi(\mathbf{r}, t)
$$

I. The wavefunction is not a scalar, it has 4 components.
II. The equation is Lorentz covariant.
III. Very natural identification of spin.
IV. Presence of antiparticle \rightarrow Vacuum is NOT nothing. Creation and
annihilation of particle and antiparticle \rightarrow Quantum Field Theory

Dirac equation

IV. Presence of antiparticle \rightarrow Vacuum is NOT nothing. Creation and annihilation of particle and antiparticle \rightarrow Quantum Field Theory

Photon $E=\hbar \omega$

$E \ll m c^{2}$, particle numbers are conserved.
$E \approx 2 m c^{2}$, the amplitude of the antiparticle cannot be ignored. Number is not conserved.

Energy scale

IV. Presence of antiparticle \rightarrow Vacuum is NOT nothing. Creation and annihilation of particle and antiparticle \rightarrow Quantum Field Theory

THE ELECTROMAGNETIC SPECTRUM

Electron mass

Constant	Values	Units
$\boldsymbol{m}_{\mathbf{e}}$	$9.1093837015(28) \times 10^{-31[1] ~}$	kg
	$5.48579909065(16) \times 10^{-4}$	Da
	$8.1871057769(25) \times 10^{-14}$	$\mathrm{~J} / \mathrm{c}^{2}$
	$0.51099895000(15)$	$\mathrm{MeV} / \mathrm{c}^{2}$
Energy of $\boldsymbol{m}_{\mathbf{e}}$	$8.1871057769(25) \times 10^{-14}$	J

The photons near the visible range never create electron-positron pair. Gamma ray with MeV energy can do the creation.

Time-independent equation for the stationary

$$
i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t)=\left[c \vec{\alpha} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)+m c^{2} \beta+q \varphi(\mathbf{r})\right] \psi(\mathbf{r}, t) \text { with } \psi(\mathbf{r}, t)=\psi(\mathbf{r}) e^{-i \omega t}
$$

$$
(E-q \varphi(\mathbf{r})) \psi(\mathbf{r})=\left[c \vec{\alpha} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)+m c^{2} \beta\right] \psi(\mathbf{r})
$$

Time-independent Dirac equation

Time-independent equation for the stationary

$$
\begin{gathered}
i \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t)=\left[c \vec{\alpha} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)+m c^{2} \beta+q \varphi(\mathbf{r})\right] \psi(\mathbf{r}, t) \text { with } \psi(\mathbf{r}, t)=\psi(\mathbf{r}) e^{-i o t} \\
(E-q \varphi(\mathbf{r})) \psi(\mathbf{r})=\left[c \vec{\alpha} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)+m c^{2} \beta\right] \psi(\mathbf{r})
\end{gathered}
$$

Under a static E-field, $\vec{A}=\mathbf{0}$

$(E-q \varphi(\mathbf{r})) \psi(\mathbf{r})=\left[c \vec{\alpha} \cdot \hat{\mathbf{p}}+m c^{2} \beta\right] \psi(\mathbf{r})$, with $\psi=\binom{\psi}{\eta}$ we have

$$
\left(\begin{array}{cc}
E-q \varphi-m c^{2} & 0 \\
0 & E-q \varphi+m c^{2}
\end{array}\right)\binom{\psi}{\eta}=c\left(\begin{array}{cc}
0 & \vec{\sigma} \cdot \hat{\vec{p}} \\
\vec{\sigma} \cdot \hat{\vec{p}} & 0
\end{array}\right)\binom{\psi}{\eta}
$$

$$
\left(E-q \varphi-m c^{2}\right) \psi=c \vec{\sigma} \cdot \hat{\vec{p}} \eta
$$

$$
\left(E-q \varphi+m c^{2}\right) \eta=c \vec{\sigma} \cdot \hat{\vec{p}} \psi
$$

Under a static E-field, $\vec{A}=\mathbf{0}$

$$
\left(E-q \varphi-m c^{2}\right) \psi=c \vec{\sigma} \cdot \hat{\vec{p}} \eta=c \vec{\sigma} \cdot \hat{\vec{p}} \frac{1}{\left(E-q \varphi+m c^{2}\right)} c \vec{\sigma} \cdot \hat{\vec{p}} \psi
$$

With $E_{s}=E-m c^{2}$ we have

$$
\underbrace{\left(E_{s}-q \varphi\right) \psi=\vec{\sigma} \cdot \hat{\hat{p}} \frac{c^{2}}{\left(E_{s}-q \varphi+2 m c^{2}\right)}} \vec{\sigma} \cdot \hat{\hat{p}} \psi=\frac{\vec{\sigma} \cdot \hat{\vec{p}}}{2 m} \frac{1}{1+\frac{\left(E_{s}-q \varphi\right.}{\left.2 m c^{2}\right)^{2}}} \vec{\sigma} \cdot \hat{\vec{p}} \psi
$$

Note, for the electron

$$
\begin{aligned}
& (E)=m c^{2}+\frac{1}{2} m v^{2}-\frac{e^{2}}{r} \\
& E_{s}-q \varphi \sim\left(\frac{1}{2} m v^{2}\right.
\end{aligned}
$$

Under a static E-field, $\vec{A}=\mathbf{0}$

$\left(E_{s}-q \varphi\right) \psi=\frac{\vec{\sigma} \cdot \hat{\vec{p}}}{2 m}\left(1-\frac{E_{s}-q \varphi}{2 m c^{2}}\right) \vec{\sigma} \cdot \hat{\vec{p}} \psi$
In the limit $\frac{v}{c} \rightarrow 0$ we have

$$
\{\vec{A} \cdot \vec{\sigma}\}\{\vec{B} \cdot \vec{\sigma}\}=\vec{A} \cdot \vec{B}+i \vec{A} \times \vec{B} \cdot \vec{\sigma}
$$

$E_{s} \psi=\left[\frac{1}{2 m}(\vec{\sigma} \cdot \hat{\vec{p}})^{2}+q \varphi\right] \psi$
$E_{s} \psi=\left[\frac{1}{2 m}(\hat{\vec{p}})^{2}+q \varphi\right] \psi$
This is the Schrodinger equation for a particle of charge q in an electrostatic potential
$\left(E_{s}-q \varphi\right) \psi=\frac{\vec{\sigma} \cdot \hat{\vec{p}}}{2 m}\left(1-\frac{E_{s}-q \varphi}{2 m c^{2}}\right) \vec{\sigma} \cdot \hat{\bar{p}} \psi$

$$
\left[\frac{(\hat{\vec{p}})^{2}}{2 m}-\frac{\vec{\sigma} \cdot \hat{\vec{p}}\left(E_{s}-q \varphi\right) \vec{\sigma} \cdot \hat{\vec{p}}}{4 m^{2} c^{2}}+q \varphi\right] \psi=E \psi
$$

At this point, we must be cautious in interpreting Ψ as a wavefunction of non-relativistic wavefunction with relativistic corrections. We must consider the normalization.

$$
\begin{gathered}
1=\int \psi^{+}(\mathbf{r}, t) \psi(\mathbf{r}, t) d^{3} \mathbf{r}+\int \eta^{+}(\mathbf{r}, t) \eta(\mathbf{r}, t) d^{3} \mathbf{r} \\
1=\int \psi^{+}(\mathbf{r}, t) \psi(\mathbf{r}, t) d^{3} \mathbf{r}+\int \psi^{+}(\mathbf{r}, t)\left(\frac{\vec{\sigma} \cdot \hat{\mathbf{p}}}{2 m c}\right)^{2} \psi(\mathbf{r}, t) d^{3} \mathbf{r}
\end{gathered}
$$

$\operatorname{Set} \psi(\mathbf{r}, t)=\left(1-\frac{\hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}\right) \psi_{s}(\mathbf{r}, t)$ with $\int \psi_{s}^{+}(\mathbf{r}, t) \psi_{s}(\mathbf{r}, t) d^{3} \mathbf{r}=1$

$$
\begin{gathered}
{\left[\frac{(\hat{\vec{p}})^{2}}{2 m}+q \varphi-\frac{\vec{\sigma} \cdot \hat{\vec{p}}\left(E_{s}-q \varphi\right) \vec{\sigma} \cdot \hat{\vec{p}}}{4 m^{2} c^{2}}\right]\left(1-\frac{\hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}\right) \psi_{s}(\mathbf{r})=E\left(1-\frac{\hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}\right) \psi_{s}(\mathbf{r})} \\
\left(1+\frac{\hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}\right)\left[\frac{(\hat{\vec{p}})^{2}}{2 m}+q \varphi-\frac{\vec{\sigma} \cdot \hat{\vec{p}}\left(E_{s}-q \varphi\right) \vec{\sigma} \cdot \hat{\vec{p}}}{4 m^{2} c^{2}}\right]\left(1-\frac{\hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}\right) \psi_{s}(\mathbf{r})=E\left(1-\left(\frac{\hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}\right)^{2}\right) \psi_{s}(\mathbf{r}) \\
{\left[\frac{(\hat{\vec{p}})^{2}}{2 m}+q \varphi-\frac{\vec{\sigma} \cdot \hat{\vec{p}}\left(E_{s}-q \varphi\right) \vec{\sigma} \cdot \hat{\vec{p}}}{4 m^{2} c^{2}}+q \frac{\hat{\mathbf{p}}^{2} \varphi-\varphi \hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}\right] \psi_{s}(\mathbf{r})=E \psi_{s}(\mathbf{r})}
\end{gathered}
$$

Note that

$$
\left[\left(E_{s}-q \varphi\right), \vec{\sigma} \cdot \hat{\vec{p}}\right]=\left[E_{s}, \vec{\sigma} \cdot \hat{\vec{p}}\right]-q[\varphi, \vec{\sigma} \cdot \hat{\vec{p}}]=-q[\varphi, \vec{\sigma} \cdot \hat{\vec{p}}]=-q[\varphi(\mathbf{r}), \vec{\sigma} \cdot \hat{\vec{p}}]=-q \vec{\sigma} \cdot[\varphi(\mathbf{r}), \hat{\vec{p}}]
$$

$$
\left(E_{s}-q \varphi\right) \vec{\sigma} \cdot \hat{\vec{p}}=\left[\left(E_{s}-q \varphi\right), \vec{\sigma} \cdot \hat{\vec{p}}\right]+\vec{\sigma} \cdot \hat{\vec{p}}\left(E_{s}-q \varphi\right)
$$

$$
\vec{\sigma} \cdot \hat{\vec{p}}\left(E_{s}-q \varphi\right) \vec{\sigma} \cdot \hat{\vec{p}}=-q(\vec{\sigma} \cdot \hat{\vec{p}}) \vec{\sigma} \cdot[\varphi(\mathbf{r}), \hat{\vec{p}}]+(\vec{\sigma} \cdot \hat{\vec{p}})^{2}\left(E_{s}-q \varphi\right)
$$

$$
-\frac{\vec{\sigma} \cdot \hat{\vec{p}}\left(E_{s}-q \varphi\right) \vec{\sigma} \cdot \hat{\vec{p}}}{4 m^{2} c^{2}}=\frac{1}{4 m^{2} c^{2}}\left(q \hbar^{2} \nabla^{2} \varphi(\mathbf{r})+q \hbar^{2} \nabla \varphi \cdot \nabla\right)-\frac{\hbar q}{4 m^{2} c^{2}}(\hat{\vec{p}} \times \nabla \varphi(\mathbf{r}) \cdot \vec{\sigma})-\frac{(\vec{\sigma} \cdot \hat{\vec{p}})^{2}\left(E_{s}-q \varphi\right.}{4 m^{2} c^{2}}
$$

$$
-q(\vec{\sigma} \cdot \hat{\vec{p}}) \vec{\sigma} \cdot[\varphi(\mathbf{r}), \hat{\vec{p}}]=-q \hat{\vec{p}} \cdot[\varphi(\mathbf{r}), \hat{\vec{p}}]-q \hat{\vec{p}} \times[\varphi(\mathbf{r}), \hat{\vec{p}}] \cdot \vec{\sigma}
$$

$$
=-q \hbar^{2} \nabla^{2} \varphi(\mathbf{r})-q \hbar^{2} \nabla \varphi \cdot \nabla+\hbar q \hat{\vec{p}} \times \nabla \varphi(\mathbf{r}) \cdot \vec{\sigma}
$$

$$
\{\vec{A} \cdot \vec{\sigma}\}\{\vec{B} \cdot \vec{\sigma}\}=\vec{A} \cdot \vec{B}+i \vec{A} \times \vec{B} \cdot \vec{\sigma}
$$

$$
\begin{aligned}
& \left(E_{s}-q \varphi\right) \psi=\frac{\vec{\sigma} \cdot \hat{\vec{p}}}{2 m}\left(1-\frac{E_{s}-q \varphi}{2 m c^{2}}\right) \vec{\sigma} \cdot \hat{\vec{p}} \psi \\
& (\vec{\sigma} \cdot \hat{\vec{p}})^{2}\left(E_{s}-q \varphi\right) \psi \approx \frac{(\vec{\sigma} \cdot \hat{\vec{p}})^{4}}{2 m} \psi=\frac{(\hat{\vec{p}})^{4}}{2 m} \psi \\
& q \frac{\hat{\mathbf{p}}^{2} \varphi-\varphi \hat{\mathbf{p}}^{2}}{8 m^{2} c^{2}}=-q \hbar^{2} \frac{1}{8 m^{2} c^{2}} \nabla^{2} \varphi-2 q \hbar^{2} \frac{1}{8 m^{2} c^{2}} \nabla \varphi \cdot \nabla
\end{aligned}
$$

Under a static E-field, $\vec{A}=\mathbf{0}$

$$
\begin{gathered}
\hat{H}_{\text {rel-corr }} \psi=E \psi \\
\hat{H}_{\text {rel-corr }}=\left(\frac{\hat{\mathbf{p}}^{2}}{2 m}+q \varphi\right)+\frac{\hat{\mathbf{p}}^{4}}{8 m^{3} c^{2}}+\frac{q \hbar^{2} \nabla^{2} \varphi(\mathbf{r})}{8 m^{2} c^{2}}-\frac{\hbar q}{4 m^{2} c^{2}}(\hat{\vec{p}} \times \nabla \varphi(\mathbf{r}) \cdot \vec{\sigma}) \\
\hat{H}_{S O C}=-\frac{\hbar q}{4 m^{2} c^{2}}(\hat{\vec{p}} \times \nabla \varphi(\mathbf{r}) \cdot \vec{\sigma})=-\frac{\hbar q}{4 m^{2} c^{2}} \vec{\sigma} \cdot(\hat{\vec{p}} \times \nabla \varphi(\mathbf{r}))=-\frac{\hbar q}{4 m^{2} c^{2}} \vec{\sigma} \cdot(\hat{\vec{p}} \times \nabla \varphi(\mathbf{r}))
\end{gathered}
$$

Note that the operators

$$
\hat{\vec{p}} \times \nabla \varphi(\mathbf{r})=-i \hbar \nabla \times \nabla \varphi(\mathbf{r})=\nabla \varphi(\mathbf{r}) \times(-i \hbar \nabla)
$$

$$
\hat{\vec{p}} \times \nabla \varphi(\mathbf{r})=-i \hbar \nabla \times \nabla \varphi(\mathbf{r})=-\nabla \varphi(\mathbf{r}) \times(-i \hbar \nabla)=-\nabla \varphi(\mathbf{r}) \times \hat{\vec{p}}
$$

Spin-Orbit Coupling

$$
\hat{H}_{S O C}=-\frac{\hbar q}{4 m^{2} c^{2}} \vec{\sigma} \cdot(\hat{\vec{p}} \times \nabla \varphi(\mathbf{r}))=-\frac{\hbar q}{4 m^{2} c^{2}} \vec{\sigma} \cdot(\hat{\vec{p}} \times \nabla \varphi(\mathbf{r}))=\frac{q}{2 m^{2} c^{2}}\left(\frac{\hbar}{2} \vec{\sigma}\right) \cdot(\nabla \varphi(\mathbf{r}) \times \hat{\vec{p}})
$$

With the potential energy for the particle $V(\mathbf{r})$

$$
\hat{H}_{S O C}=\frac{1}{2 m^{2} c^{2}}\left(\frac{\hbar}{2} \vec{\sigma}\right) \cdot(\nabla V(\mathbf{r}) \times \hat{\vec{p}})
$$

s

Spin-orbit coupling

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})+\hat{H}_{s o c}\right] \psi_{n}(\mathbf{r})=E_{n} \psi_{n}(\mathbf{r})
$$

$\hat{H}_{S O C}=\frac{1}{2 m^{2} c^{2}}\left(\frac{\hbar}{2} \vec{\sigma}\right) \cdot(\nabla V(\mathbf{r}) \times \hat{\vec{p}})$
For a spherical symmetric potential $\nabla V(\mathbf{r})=\nabla V(r)=\frac{d V}{d r} \frac{\mathbf{r}}{r}$

$$
\hat{H}_{S O C}=\frac{1}{2 m^{2} c^{2}}\left(\frac{\hbar}{2} \vec{\sigma}\right) \cdot\left(\frac{1}{r} \frac{d V}{d r}\right) \mathbf{r} \times \hat{\vec{p}}=\frac{1}{2 m^{2} c^{2}}\left(\frac{1}{r} \frac{d V}{d r}\right) \hat{\vec{S}} \cdot \hat{\vec{L}}
$$

Again, for the zero-th order

$$
\left(E_{s}-q \varphi\right) \psi=\frac{\vec{\sigma} \cdot \hat{\vec{p}}}{2 m}\left(1-\frac{E_{s}-q \varphi}{2 m c^{2}}\right) \vec{\sigma} \cdot \hat{\vec{p}} \psi
$$

In the limit $\frac{v}{c} \rightarrow 0$ we have the non-relativistic Schrodinger

$$
\begin{array}{ll}
E_{s} \psi=\left[\frac{1}{2 m}(\vec{\sigma} \cdot \hat{\vec{p}})^{2}+q \varphi\right] \psi & \\
E_{s} \psi=\left[\frac{1}{2 m}(\hat{\vec{p}})^{2}+q \varphi\right] \psi, & \text { Are these two identical equation } \\
\text { Yes or No }
\end{array}
$$

$$
\{\vec{A} \cdot \vec{\sigma}\}\{\vec{B} \cdot \vec{\sigma}\}=\vec{A} \cdot \vec{B}+i \vec{A} \times \vec{B} \cdot \vec{\sigma}
$$

With the vector potential

$$
(E-q \varphi(\mathbf{r})) \psi(\mathbf{r})=\left[c \vec{\alpha} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)+m c^{2} \beta\right] \psi(\mathbf{r}), \text { with } \psi=\binom{\psi}{\eta} \text { we have }
$$

$$
\left(\begin{array}{cc}
E-q \varphi-m c^{2} & 0 \\
0 & E-q \varphi+m c^{2}
\end{array}\right)\binom{\psi}{\eta}=c\left(\begin{array}{cc}
0 & \vec{\sigma} \cdot \hat{\vec{p}}-\frac{q}{c} \mathbf{A} \\
\vec{\sigma} \cdot \hat{\vec{p}}-\frac{q}{c} \mathbf{A} & 0
\end{array}\right)\binom{\psi}{\eta}
$$

$$
\begin{aligned}
& \left(E-q \varphi-m c^{2}\right) \psi=c \vec{\sigma} \cdot\left(\hat{\vec{p}}-\frac{q}{c} \mathbf{A}\right) \eta \\
& \left(E-q \varphi+m c^{2}\right) \eta=c \vec{\sigma} \cdot\left(\hat{\vec{p}}-\frac{q}{c} \mathbf{A}\right) \psi
\end{aligned}
$$

The zero-th order in the limit $v / c \rightarrow \mathbf{0}$

Exactly the same way through which we derived the non-relativistic Schrodinger

$$
\left[\frac{1}{2 m}(\vec{\sigma} \cdot \hat{\vec{p}})^{2}+V(\mathbf{r})\right] \psi=E_{s} \psi
$$

We can derive the zero-th order equation, the non-relativistic limit,

$$
\left.\left[\frac{1}{2 m}\left(\vec{\sigma} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)\right)^{2}+V(\mathbf{r})\right] \psi=E_{s} \psi\right\}\{\vec{A} \cdot \vec{\sigma}\}\{\vec{B} \cdot \vec{\sigma}\}=\vec{A} \cdot \vec{B}+i \vec{A} \times \vec{B} \cdot \vec{\sigma}
$$

The zero-th order, for the particle in magnetic field

Note that

$$
\{\vec{A} \cdot \vec{\sigma}\}\{\vec{B} \cdot \vec{\sigma}\}=\vec{A} \cdot \vec{B}+i \vec{A} \times \vec{B} \cdot \vec{\sigma}
$$

The equation

$$
\begin{aligned}
& \left(\vec{\sigma} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)\right)^{2}=\vec{\sigma} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right) \vec{\sigma} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right) \\
& =\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)^{2}+i\left(-i \hbar \nabla-\frac{q}{c} \mathbf{A}\right) \times\left(-i \hbar \nabla-\frac{q}{c} \mathbf{A}\right) \cdot \vec{\sigma} \\
& =\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)^{2}+i(-i \hbar \nabla) \times\left(-\frac{q}{c} \mathbf{A}\right) \cdot \vec{\sigma}+i\left(-\frac{q}{c} \mathbf{A}\right) \times(-i \hbar \nabla) \cdot \vec{\sigma} \\
& =\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)^{2}-\frac{q \hbar}{c}(\nabla \times \mathbf{A}) \cdot \vec{\sigma}=\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)^{2}-\frac{q \hbar}{c} \mathbf{B} \cdot \vec{\sigma}
\end{aligned}
$$

The zero-th order, for the particle in magnetic field

$$
\begin{gathered}
{\left[\frac{1}{2 m}\left(\vec{\sigma} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)\right)^{2}+V(\mathbf{r})\right] \psi=E_{s} \psi} \\
{\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)^{2}-\frac{q \hbar}{2 m c} \mathbf{B} \cdot \vec{\sigma}+V(\mathbf{r})\right] \psi=E_{s} \psi}
\end{gathered}
$$

The equation very naturally produces the doublet term, that might have been recognized empirically by Pauli

$$
\hat{H}_{\text {Zeeman }}=-\frac{q \hbar}{2 m c} \mathbf{B} \cdot \vec{\sigma}=-\frac{q}{m c} \mathbf{B} \cdot\left(\frac{\hbar}{2} \vec{\sigma}\right)
$$

Lorentz covariance

- Think of two reference frames

$$
\frac{\left(\gamma^{\mu} \hat{p}_{\mu}-m c\right) \psi(x)=0}{\left(\gamma^{\mu} \hat{p}_{\mu}^{\prime}-m c\right) \psi^{\prime}\left(x^{\prime}\right)=0}
$$

Is this four vector ?, and then $\gamma^{\mu} \widehat{\boldsymbol{p}}_{\mu}$ is four-scalar?: NO !!, Don't be confused. It is just the name of 4×4 matrices.

- Using the Lorentz transformation

$$
x^{\prime \mu}=\Lambda_{\alpha}^{\mu} x^{\alpha}, \hat{p}_{\mu}^{\prime}=\Lambda_{\mu}^{\beta} \hat{p}_{\beta}
$$

Lorentz covariance

$$
\left(\gamma^{\mu} \hat{p}_{\mu}^{\prime}-m c\right) \psi^{\prime}\left(x^{\prime}\right)=0
$$

$\left(\gamma^{\mu} \Lambda_{\mu}{ }^{\beta} \hat{p}_{\beta}-m c\right) \psi^{\prime}\left(x^{\prime}\right)=0$, Introducing $\psi^{\prime}=S \psi$

$$
\left(S^{-1} \gamma^{\mu} \Lambda_{\mu}{ }^{\beta} \hat{p}_{\beta} S-m c\right) \psi\left(\Lambda^{-1} x\right)=0
$$

$$
\left(\gamma^{\beta} \hat{p}_{\beta}-m c\right) \psi\left(\Lambda^{-1} x\right)=0
$$

We can find the matrix such that

$$
S^{-1} \gamma^{\mu} \Lambda_{\mu}{ }^{\beta} S=\gamma^{\beta}
$$

$$
S \gamma^{\beta} S^{-1}=\gamma^{\mu} \Lambda_{\mu}^{\beta}=\gamma^{\mu}\left(\Lambda^{-1}\right)_{\mu}^{\beta}
$$

Lorentz covariance, transformation rule

$$
\begin{aligned}
& x^{\mu} \rightarrow \Lambda_{\alpha}^{\mu} x^{\alpha} \\
& \hat{p}^{\mu} \rightarrow \Lambda_{\alpha}^{\mu} \hat{p}^{\alpha} \\
& \psi \rightarrow S \psi
\end{aligned}
$$

Rotation generator

- Find the rotation generator of an infinitesimal rotation

$\psi \rightarrow S \psi=\left(1-i \theta \frac{1}{\hbar} \hat{n} \cdot\left(\mathbf{r} \times \hat{\mathbf{p}}+\frac{\hbar}{2} \vec{\sigma}\right) \ldots\right) \psi$
- For the 4-component wave, we have the rotation generator. We have the spin. It is a sort of angular momentum, because it is rotation generator.

$$
\hat{\mathbf{J}}=\mathbf{r} \times \hat{\mathbf{p}}+\hat{\mathbf{S}}
$$

Summary

I. In Dirac's relativistic theory for a particle, the spin is very naturally identified. It is spin $1 / 2$.
II. In high-energy situation, there is no physics of isolated single particle. It automatically includes the presence of antiparticle, and we have a quantum theory for many particles.
III. In usual the condensed-matter situations, the presence of antiparticle can be ignored. However, the relativistic effect is still very important.

$$
\hat{H}_{S O C}=\frac{1}{2 m^{2} c^{2}}\left(\frac{\hbar}{2} \vec{\sigma}\right) \cdot(\nabla V(\mathbf{r}) \times \hat{\vec{p}})
$$

Homework \& limit $v / c \rightarrow 0$

In the limit $\boldsymbol{v} / \boldsymbol{c} \rightarrow \mathbf{0}$, Dirac equation converges into

$$
\left[\frac{1}{2 m}\left(\vec{\sigma} \cdot\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)\right)^{2}+V(\mathbf{r})\right] \psi=E_{s} \psi
$$

Us'ing the identity $\{\vec{A} \cdot \vec{\sigma}\}\{\vec{B} \cdot \vec{\sigma}\}=\vec{A} \cdot \vec{B}+i \vec{A} \times \vec{B} \cdot \vec{\sigma}$
Show that the equation is identical to the following.

$$
\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)^{2}-\frac{q \hbar}{2 m c} \mathbf{B} \cdot \vec{\sigma}+V(\mathbf{r})\right] \psi=E_{s} \psi
$$

Homework \& Discussion

1. We derived the light-matter Hamiltonian in the long wave length limit.

$$
\hat{H}^{\prime}=\frac{e}{m c} \mathbf{A} \cdot \hat{\mathbf{p}}=\frac{e}{m \omega} \mathbf{E}(t) \cdot \hat{\mathbf{p}}
$$

2. Can you suggest a next-order term for a near field, that can take into account the wave length dependence of the field?
