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Brief overview of quantum mechanics

Dipole approximation for light-matter interaction

Schrodinger equation and Dirac equation

Spin-orbit coupling 
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Pauli’s recognition of the doublet  
1. Besides the Rydberg series, Pauli and others well 

recognized that the level can be split, depending on 

the magnetic field 
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Early recognition of the electron’s spin   

It might be possible to postulate the equation in 

terms of an intrinsic magnetic dipole, which seems 

to be quantized by a two state (spin up, spin down)
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 Now let us consider the special relativity. 

 The Lorentz-covariance of the matter wave equation ?   



 Let’s first think of the space-time 
coordinates and their transformation rules.

Four-vector and Lorentz transformation 

 The Einstein’s assertion of the invariance of speed of light requires that 
the following quantity should be invariant (i.e. being the four scalar) 
over the transformation.  
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1. Contravariant four vector

2. Minkowskii metrics

3. Covariant four vector 

Four-vector & Minkowskii metrics  
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4. The inner product of two four vector be invariant, being the four scalar, 
over the Lorentz transformation. 

5. Invariance of the scalar over the Lorentz transformation  

Four-vector & Minkowskii metrics  
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 The matrix should be of

Lorentz transformation

     g gµ ν
µν α β αβΛ Λ =



Four vectors in E&M  
 4-momentum

 4-current and 4-potential  
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4-gradient and 4-momentum   
1. Four gradient  
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The 4-gradient of the contravariant position transforms as a covariant 4-vector.



 Since the contravariant and covariant form of four-derivatives are 
available obviously,  we may easily define the four-momenta.

Four-momentum as a four vector 
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Equations for the matter wave  
 Schrodinger equation is the equation for the matter wave 

corresponding to Newtonian Energy-momentum relation. For example, 
for a free particle (the energy-momentum eigenstate) 
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Equations for the matter wave  
 Klein & Gordon suggested the following form of matter wave equation

 To fit with the relativistic energy-momentum equation
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Equations for the matter wave  
 To make a Lorentz-covariant matter wave equation, the equation must 

be linear in terms of four momentum, all linear in 𝜕𝜕𝜇𝜇 = ⁄𝜕𝜕 𝜕𝜕𝑥𝑥𝜇𝜇

 Dirac recognize that, to implement the relativistic energy-momentum 
relation (𝐸𝐸2 = 𝑝𝑝2𝑐𝑐2 + 𝑚𝑚2𝑐𝑐4) into the matter wave from, in accordance 
with the Plank’s quantized radiation (𝜔𝜔 = ⁄𝐸𝐸 ħ) and de Broglie (λ =

⁄2𝜋𝜋ħ 𝑝𝑝) , 

 the vector wavefunction with multiple wavefunctions is inevitable. 



 Dirac intended to invent an equation with the first order in time by 
introducing four matrices and vector wave function.   

 Later, we assign a transformation rule on ψ so that it successfully 
produces 4-vector current density with a positive-definite density 

The equation Dirac proposed 
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Is this four vector ?, and then 𝜸𝜸𝝁𝝁�𝒑𝒑𝝁𝝁 is four-scalar ? : 
NO !!, Don’t be confused. It is just the name of 4x4 matrices.

  ,   0j jµ µ µ
µψγ ψ= ∂ =



 Let us search for general attributes that the γ matrices should have.

 Since the momentum operators are commuting, �𝑝𝑝μ, �𝑝𝑝ν = 0

Lorentz-covariant equation of motion
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 Let’s require to find 

 What are these four symbols ?  𝛾𝛾0, 𝛾𝛾1, 𝛾𝛾2, 𝛾𝛾3

 There are no representation of the Clifford algebra using 2x2 or 3x3 
matrices. 

 The simplest representation of the Clifford algebra is 4x4, but there 
are many representation with 4x4 matrices. 

Clifford algebra
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 Block 2x2 operations

 Block transpose

Block off-diagonal matrix
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 Four matrices and the fifths

 Transpose-conjugate matrix

 [Proof] it is obvious for 𝜇𝜇 = 0

Chiral-Weyl representation 
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Majorana representation 
 To make every component complex number

 Show that the fifth  
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 The gamma 4-vector

 The Dirac equation

 Multiply 𝛾𝛾0 on both sides   

Dirac-Pauli representation
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 The Dirac equation for a free particle 

Dirac-Pauli representation
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 For a particle with a charge of 𝑞𝑞 under a E&M field  

Dirac-Pauli representation
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I. The wavefunction is not a scalar, it has 4 components. 

II. The equation is Lorentz covariant. 

III. Very natural identification of spin.

IV. Presence of antiparticle  Vacuum is NOT nothing. Creation and  

annihilation of particle and antiparticle Quantum Field Theory

Dirac equation 
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IV. Presence of antiparticle  Vacuum is NOT nothing. Creation and  

annihilation of particle and antiparticle Quantum Field Theory

Dirac equation 

Photon E ω= 
2

2

 , particle numbers are conserved.
2  , the amplitude of the antiparticle cannot be ignored. 

Number is not conserved.

E mc
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IV. Presence of antiparticle  Vacuum is NOT nothing. Creation and  

annihilation of particle and antiparticle Quantum Field Theory

Energy scale  

The photons near the visible range never create electron-positron pair.
Gamma ray with MeV energy can do the creation.



Time-independent equation for the stationary
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Time-independent Dirac equation 



Time-independent equation for the stationary
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Under a static E-field, 𝑨𝑨 = 𝟎𝟎
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Under a static E-field, 𝑨𝑨 = 𝟎𝟎
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Note, for the electron 
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Under a static E-field, 𝑨𝑨 = 𝟎𝟎
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This is the Schrodinger equation for a particle of charge 
𝑞𝑞 in an electrostatic potential



Normalization ( ) 2
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At this point, we must be cautious in interpreting Ψ as a wavefunction of non-relativistic wavefunction with 
relativistic corrections. We must consider the normalization.  
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Note that 
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Under a static E-field, 𝑨𝑨 = 𝟎𝟎
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Note that the operators 
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Spin-Orbit Coupling 
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Spin-orbit coupling   
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Again, for the zero-th order 
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Are these two identical equation ?

Yes or No 



With the vector potential 
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Exactly the same way through which we derived the non-relativistic 
Schrodinger 

We can derive the zero-th order equation, the non-relativistic limit,   

The zero-th order in the limit ⁄𝒗𝒗 𝒄𝒄 → 𝟎𝟎
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Note that 

The equation 

The zero-th order, for the particle in magnetic field
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The zero-th order, for the particle in magnetic field
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The equation very naturally produces the doublet term, that might 
have been recognized empirically by Pauli
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 Think of two reference frames  

 Using the  Lorentz transformation 

Lorentz covariance   
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Is this four vector ?, and then 𝜸𝜸𝝁𝝁�𝒑𝒑𝝁𝝁 is four-scalar ? : 
NO !!, Don’t be confused. It is just the name of 4x4 matrices.

   
   ˆ ˆ , x x p pµ µ α β
α µ µ β′ ′= Λ = Λ



Lorentz covariance   

   

1    1

1

ˆ( ) ( ) 0

ˆ( ) ( ) 0 , Introducing 

ˆ( ) ( ) 0

ˆ( ) ( ) 0

p mc x

p mc x S

S p S mc x

p mc x

µ
µ

µ β
µ β

µ β
µ β

β
β

γ ψ

γ ψ ψ ψ

γ ψ

γ ψ

− −

−

′ ′ ′− =

′ ′ ′Λ − = =

Λ − Λ =

− Λ =

( )

1    

1    1

  

S S

S S

µ β β
µ

ββ µ β µ
µ µ

γ γ

γ γ γ

−

− −

Λ =

= Λ = Λ

We can find the matrix such that 



Lorentz covariance, transformation rule   

   

   ˆ ˆ
x x
p p

S

µ µ α
α

µ µ α
α

ψ ψ

→Λ

→Λ
→

4x4 matrix 



Rotation generator    
 Find the rotation generator of an infinitesimal 

rotation  

1 ˆˆ1 ( )....
2

S i nψ ψ θ σ ψ → = − ⋅ × + 
 

r p  



ˆˆ ˆ= × +J r p S

 For the 4-component wave, we have the rotation generator. 
We have the spin. It is a sort of angular momentum, because it 
is rotation generator.  



Summary 
I. In Dirac’s relativistic theory for a particle, the spin is very 

naturally identified. It is spin 1/2. 

II. In high-energy situation, there is no physics of isolated single 
particle. It automatically includes the presence of antiparticle, 
and we have a quantum theory for many particles.  

III. In usual the condensed-matter situations, the presence of 
antiparticle can be ignored. However, the relativistic effect is 
still very important. 

( )2 2

1 ˆˆ ( )
2 2SOCH V p

m c
σ = ⋅ ∇ × 

 
r  



In the limit ⁄𝒗𝒗 𝒄𝒄 → 𝟎𝟎 , Dirac equation converges into 

Using the identity

Show that the equation is identical to the following.     

Homework & Discussion  : The zero-th order in the 
limit ⁄𝒗𝒗 𝒄𝒄 → 𝟎𝟎

21 ˆ( ) ( )
2 s

q V E
m c

σ ψ ψ
  ⋅ − + =  

   
p A r

{ }{ }A B A B iA Bσ σ σ⋅ ⋅ = ⋅ + × ⋅
    

  

21 ˆ( ) ( )
2 2 s

q q V E
m c mc

σ ψ ψ − − ⋅ + =  
p A B r 

Tomorrow 5 PM, let us have 10 minute discussion time on this. Uiseok may present this page. 



1. We derived the light-matter Hamiltonian in the long wave length limit.

2. Can you suggest a next-order term for a near field, that can take into 

account the wave length dependence of the field ? 

Homework & Discussion     

ˆ ˆ ˆ( )e eH t
mc mω

′ = ⋅ = ⋅A p E p
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