Day-1

I. Brief overview of quantum mechanics
II. Dipole approximation for light-matter interaction
III. Schrodinger equation and Dirac equation
IV. Spin-orbit coupling

Schrodinger equation for a single particle

$$
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi(\mathbf{r}, t)
$$

1. The equation of motion for the matter wave for a

Newtonian particle.
Newtonian
2. Instead of Newtonian trajectory every observable is now to be obtained from the information contained in the matter wave $\Psi(\vec{r}, t)$

Schrodinger equation for a single particle

$$
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi(\mathbf{r}, t) \quad V(\mathbf{r})=-\frac{e^{2}}{r}
$$

1. For the Bohr's stationary state,

$$
\psi(\mathbf{r}, t)=e^{-i(\text { Real Number }) t} \psi(\mathbf{r})=e^{-i \frac{E}{\hbar} t} \psi(\mathbf{r})
$$

2. We have time-independent eigenvalue equation

$$
\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r})\right] \psi_{n}(\mathbf{r})=E_{n} \psi_{n}(\mathbf{r})
$$

$$
V(r)=-\frac{e^{2}}{r}
$$

Schrodinger equation for a single particle

3. Rydberg series for hydrogen atom

$$
E_{n}=-\frac{m e^{4}}{2 \hbar^{2}} \frac{1}{n^{2}}=-\frac{e^{2}}{2 a_{0}}, \text { where } a_{0}=\frac{\hbar^{2}}{m e^{2}}
$$

Schrodinger equation for a single particle

4. The quantities in atomic world
$>$ Scales of quantity in atomic world
$>$ Length: Bohr Radius $a_{0}=\frac{\hbar^{2}}{m e^{2}}$
\rightarrow Energy $\mathbb{R}=\frac{e^{2}}{2 a_{0}}=\frac{1}{2} \frac{m e^{4}}{\hbar^{2}} \quad$ Hatree, $H_{a}=\frac{m e^{4}}{\hbar^{2}}$
$>$ Time $t_{0}=\frac{\hbar}{\frac{e^{2}}{2 a_{0}}}=\frac{2 a_{0} \hbar}{e^{2}}=\frac{2 \hbar^{3}}{m e^{4}}=1$
$>1 / 137=\frac{e^{2}}{}$ 法 $\frac{1}{100}=\alpha=\frac{e^{2}}{\hbar c} . \quad C=\frac{e^{2}}{\hbar} \frac{1}{\alpha}$

Schrodinger equation for a single particle

Schrodinger equation for a particle

$$
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}-e \varphi(\mathbf{r})\right] \psi(\mathbf{r}, t)
$$

for an election electoslatic potential $\varphi(\vec{F})$

Maxwell's theories for E\&M

1. The fields generated by the sources in the vacuum

$$
\begin{aligned}
& \nabla \cdot \mathbf{E}(\mathbf{r}, t)=4 \pi \rho(\mathbf{r}), \quad \nabla \cdot \mathbf{B}(\mathbf{r}, t)=0 \\
& \nabla \times \mathbf{B}(\mathbf{r}, t)-\frac{1}{c} \frac{\partial}{\partial t} \mathbf{E}(\mathbf{r}, t)=\frac{4 \pi}{c} \mathbf{j}(\mathbf{r}, t), \quad \nabla \times \mathbf{E}(\mathbf{r}, t)+\frac{1}{c} \frac{\partial}{\partial t} \mathbf{B}(\mathbf{r}, t)=0
\end{aligned}
$$

2. The potential

$$
\mathbf{E}(\mathbf{r}, t)=-\nabla \varphi(\mathbf{r}, t)-\frac{1}{c} \frac{\partial}{\partial t} \mathbf{A}(\mathbf{r}, t), \quad \mathbf{B}(\mathbf{r}, t)=\nabla \times \mathbf{A}(\mathbf{r}, t)
$$

Maxwell's theory for E\&M

3. The potential functions are not unique \rightarrow Gauge degree of freedom. Note that the scalar and vector potential provide the same E\&M field.

$$
\begin{aligned}
& \mathbf{A} \rightarrow \mathbf{A}^{\prime}=\mathbf{A}+\nabla \lambda(\mathbf{r}, t) \\
& \varphi \rightarrow \varphi^{\prime}=\varphi-\frac{1}{c} \frac{\partial}{\partial t} \lambda(\mathbf{r}, t)
\end{aligned}
$$

Example : Spatially uniform E-field

- Show that the following two sets of potential fields produces the same electric field $\vec{E}(t)$?

$$
\begin{gathered}
\mathbf{A}(\mathbf{r}, t)=-c \int^{t} \mathbf{E}\left(t^{\prime}\right) d t^{\prime} \\
\varphi(\mathbf{r}, t)=0
\end{gathered}
$$

$$
\begin{gathered}
\mathbf{A}(\mathbf{r}, t)=0 \\
\varphi(\mathbf{r}, t)=-\mathbf{r} \cdot \mathbf{E}(t)
\end{gathered}
$$

Example :

$>$ The Schrodinger equation for the electron in H atom

$$
\Delta=-e \varphi(\vec{r})
$$

Disaster !!! : the potential is NOT unique !!!

$U(1)$ gauge symmetry

$>$ For a particle with the charge q in a given E\&M field, the Schrodinger equation must be

$$
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}\right)^{2}+q \varphi(\mathbf{r})\right] \psi(\mathbf{r}, t)(0)
$$

$$
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[\frac{1}{2 m}(\hat{\mathbf{p}})^{2}+q \varphi(\mathbf{r})\right] \psi(\mathbf{r}, t)
$$

Hamiltonian of a charged particle in E\&M

Since classical Lagrangian (which brings Lorentz force Law) for a particle in EM field is
$L=\frac{1}{2} m v^{2}-q \phi+\frac{q}{c} \vec{A} \cdot \vec{v}$
Canoniacal momentum of the particle is defined as
$\vec{p}=\frac{\partial L}{\partial \dot{q}}=m \vec{v}+\frac{q}{c} \vec{A}$
So hamiltonian is

$$
\begin{aligned}
H=\vec{p} v-L & =\frac{\vec{p}}{m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)-\frac{1}{2} m v^{2}+q \phi-\frac{q}{c} \vec{A} \cdot \vec{v} \\
& =\frac{\vec{p}}{m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)-\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)^{2}-\frac{q}{m} \\
& =\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)^{2}+q \phi=\frac{1}{2} m v^{2}+q \phi
\end{aligned}
$$

$$
=\frac{\vec{p}}{m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)-\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)^{2}-\frac{q}{m} \vec{A} \cdot\left(\vec{p}-\frac{q}{c} \vec{A}\right)+q \phi=\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)\left(2 \vec{p}-\vec{p}+\frac{q}{c} \vec{A}-2 \frac{q}{c} \vec{A}\right)+q \phi
$$

This means that what needs for magnetic field contribution is just changing classical momentum to canonical momentum.

$\mathrm{U}(1)$ gauge symmetry

$>$ Let us think of the Schrodinger equation for a particle with a charge q.
$>$ Every physical observables are invariant over the change $\Psi \rightarrow e^{i \theta} \Psi$ for a real constant θ. This is called global phase symmetry.
$>$ Actually, the Schrodinger field is invariant over the local phase change $\Psi \rightarrow e^{i \theta(\vec{r}, t)} \Psi$, owing to the presence of gauge field.

$$
\begin{array}{ll}
\mathbf{U (1)} \text { gauge symmetry } \\
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{q}{c}(\mathbf{A})^{2}+q(\varphi)\right)\right] \psi(\mathbf{r}, t)
\end{array}, \begin{aligned}
& \mathbf{A} \rightarrow \mathbf{A}^{\prime}=\mathbf{A}+\nabla \lambda(\mathbf{r}, t) \\
& \varphi
\end{aligned} \rightarrow \varphi^{\prime}=\varphi-\frac{1}{c} \frac{\partial}{\partial t} \lambda(\mathbf{r}, t)
$$

$$
\left(i \hbar \frac{\partial \psi^{\prime}(\mathbf{r}, t)}{\partial t}=\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}-\frac{q}{c} \mathbf{A}^{\prime}\right)^{2}+\left\langle\left(\varphi^{\prime}(\mathbf{(})\right] \psi^{\prime}(\mathbf{r}, t)\right.\right.\right.
$$

Show that $\psi^{\prime}(\mathbf{r}, t)=e^{i \frac{q(\mathbf{r}, t)}{h_{c}}} \psi(\mathbf{r}, t)$

Example.

$>$ A particle in a uniform electric field

$$
\begin{array}{cc}
\mathbf{A}(\mathbf{r}, t)=-c \int^{t} \mathbf{E}\left(t^{\prime}\right) d t^{\prime} & \mathbf{A}(\mathbf{r}, t)=0 \\
\varphi(\mathbf{r}, t)=0 & \varphi(\mathbf{r}, t)=-\mathbf{r} \cdot \mathbf{E}(t)
\end{array}
$$

$>$ For example, a uniform constant electric field in \hat{z} direction.

$$
\mathbf{A}=\frac{(0,0,-c E t)}{\varphi=0}
$$

$$
\begin{aligned}
& \mathbf{A}=(0,0,0) \\
& \varphi=-E z
\end{aligned}
$$

Maxwell's theory for E\&M

4. The potential functions are not unique \rightarrow Gauge degree of freedom. Note that the scalar and vector potential provide the same E\&M field.
5. Show that the coupled equation of motions for the potential fields :
axtell $\left.\Rightarrow \frac{\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \mathbf{A}-\nabla\left(\nabla \cdot \mathbf{A}+\frac{1}{c} \frac{\partial \varphi}{\partial t}\right)=-\frac{4 \pi}{c} \mathbf{j}}{\left(\nabla^{2} \varphi+\frac{1}{c} \frac{\partial}{\partial t} \nabla \cdot \mathbf{A}=-4 \pi \rho\right.}\right)$

Maxwell's theory for E\&M

6. In the Lorentz gauge, we choose

$$
\nabla \cdot \mathbf{A}+\frac{1}{c} \frac{\partial \varphi}{\partial t}=0
$$

Now we have two un-coupled wave equations

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \mathbf{A}=-\frac{4 \pi}{c} \mathbf{j}, \quad\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \varphi=-4 \pi \rho
$$

Maxwell's theory for E\&M

7. In the Coulomb gauge we choose transuarge Radon tor

$$
\nabla \cdot \mathbf{A}=0
$$

And we have one wave-like equation and the Poisson's equation for the scalar field.

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \mathbf{A}=\nabla\left(\frac{1}{c} \frac{\partial \varphi}{\partial t}\right)-\frac{4 \pi}{c} \mathbf{j}
$$

$$
\nabla^{2} \varphi=-4 \pi \rho<p_{\text {Filsmeq }}
$$

Maxwell's theory for E\&M

7. The solution of the Poisson's equation

$$
\nabla^{2} \varphi=-4 \pi \rho
$$

Can you guess why it is called Coulomb gauge ? Note that the scalar potential is just the instantaneous Coulomb potential ?

Then, it might violate the special Relativity causality condition?
No !!!, we cannot say that way. The E\&M fields to satisfy the Lorentz transformation.
The scalar potential decays as $1 / r$ from the source.

Maxwell's theory for E\&M

$$
\begin{aligned}
& \frac{\left.\varphi(\vec{r}, t)=\int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{\eta}^{\prime}\right)}{\vec{\nabla} \cdot \vec{A}=0,} \\
& \left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=0 \\
& \text { Wave the the vacuum. }
\end{aligned}
$$

Maxwell's theory for E\&M

8. At an infinitely separated field points $r \rightarrow \infty$

$$
\begin{aligned}
& \Phi=\int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime} \rightarrow 0 \\
& \vec{\nabla} \bullet \vec{A}=0,\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=0
\end{aligned}
$$

The vector potential provides propagating transverse radiation field.
The contribution of the Coulomb potential is only to the near field.

Maxwell's theory for E\&M

9. Propagating transverse radiation field (light)

$$
\begin{aligned}
& \Phi=\int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime} \rightarrow 0, \vec{\nabla} \cdot \mathbf{A}=0,\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \mathbf{A}=0, \\
& \mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k}} \sum_{\hat{\delta}}\left(\alpha(\mathbf{k}) \hat{\varepsilon} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}+c c\right)
\end{aligned}
$$

10. It is transversely oscillating plane-waves

$$
\begin{aligned}
& \vec{\nabla} \cdot \mathbf{A}=\sum_{\mathbf{k}} \sum_{\hat{\varepsilon}}\left(\alpha(\mathbf{k}) i \mathbf{k} \cdot \hat{\varepsilon} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}+c c\right)=0 \\
& \text { we have } \mathbf{k} \cdot \hat{\varepsilon}=0<\operatorname{ly} h t \text { polacsy } \perp \vec{R}
\end{aligned}
$$

Light field

1. Propagating transverse radiation field (light)

$$
\begin{gathered}
\Phi=\int \frac{\rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} \vec{r}^{\prime} \rightarrow 0, \vec{\nabla} \cdot \mathbf{A}=0,\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \mathbf{A}=0, \\
\mathbf{A}(\mathbf{r}, t)=\sum_{\mathbf{k}} \sum_{\hat{\varepsilon}}\left(\alpha(\mathbf{k}) \hat{\varepsilon} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}+c c\right)
\end{gathered}
$$

2. It is transversely oscillating plane-waves

$$
\begin{gathered}
\vec{\nabla} \cdot \mathbf{A}=\sum_{\mathbf{k}} \sum_{\hat{\varepsilon}}\left(\alpha(\mathbf{k}) i \mathbf{k} \cdot \hat{\varepsilon} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}+c c\right)=0 \\
\text { we have } \mathbf{k} \cdot \hat{\varepsilon}=0
\end{gathered}
$$

Light field

3. For example, a monochromatic field

$$
\vec{A}=A_{0} \hat{\varepsilon} e^{i(\vec{k} \cdot \vec{r}-\omega t)}+c c . \quad \text { Note } \quad \vec{\nabla} \cdot \vec{A}=0, \vec{k} \bullet \hat{\varepsilon}=0
$$

$\vec{B}=\vec{\nabla} \times \vec{A}=-i \vec{k} \times\left(A_{0} \hat{\varepsilon} e^{i(\vec{k} \cdot \vec{r}-\omega t)}+c c.\right)$

Light-matter interaction

1. For example, a material (atom, molecule, solid) under a light field,

Material size is typically ~ 1 Angstrom
Wave length of light $\sim 500 \mathrm{~nm}$

$$
\vec{A}=A_{0} \hat{\varepsilon} e^{i(\vec{k} \cdot \vec{r}-\omega t)}+c c . \approx A_{0} \hat{\varepsilon} e^{-i \omega t}+c c
$$

In other word, in the long wave-length limit, the material experience the light field as a spatially uniform electric field.
Long wane lough lint Duple Approx

Light-matter interaction

1. For example, a material (atom, molecule, solid) under a light field,

$$
\begin{aligned}
& i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left[\frac{1}{2 m}\left(-i \hbar \nabla-\frac{q}{c} \mathbf{A}\right)^{2}+V(\mathbf{r})\right] \psi(\mathbf{r}, t) \\
& \left(-i \hbar \nabla-\frac{q}{c} \mathbf{A}\right)^{2}=\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}\right) \cdot\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}\right)^{2} \\
& =-i \hbar \nabla \cdot\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}\right)+\frac{e}{c} \mathbf{A} \cdot\left(-i \hbar \nabla+\frac{e}{c} \mathbf{A}\right) \\
& =(-i \hbar \nabla)^{2}-i \hbar \frac{e}{c} \nabla \cdot \mathbf{A}-i \hbar \frac{e}{c} \mathbf{A} \cdot \nabla+\left(\frac{e}{c} \mathbf{A}\right)^{2} \\
& =(-i \hbar \nabla)^{2}-i \hbar \frac{e}{c}(\nabla \cdot \mathbf{A})-2 i \hbar \frac{e}{c} \mathbf{A} \cdot \nabla+\left(\frac{e}{c} \mathbf{A}\right)^{2} \\
& e: \vec{\nabla} \cdot \vec{A}=0 \quad-2 \frac{e}{c} \vec{A} \cdot \vec{P}
\end{aligned}
$$

Light-matter interaction, up to first order

1. For example, a material (atom, molecule, solid) under a light field,

$$
i \hbar \frac{\partial \psi(\mathbf{r}, t)}{\partial t}=\left(\hat{H}_{0}+\hat{H}^{\prime}\right) \psi(\mathbf{r}, t)
$$

$$
\hat{H}_{0}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\mathbf{r}) \text { and } \hat{H}^{\prime}=\frac{e}{m c} \mathbf{A} \cdot \hat{\mathbf{p}}
$$

$$
\hat{H}^{\prime}=\frac{e}{m \omega} \mathbf{E}(t) \cdot \hat{\mathbf{p}}=\frac{e}{m \omega}\left(\mathbf{E}(\omega) e^{i \omega t}+\mathbf{E}(-\omega) e^{-i \omega t}\right) \cdot \hat{\mathbf{p}}
$$

