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I. Brief overview of quantum mechanics

II. Dipole approximation for light-matter interaction

III. Schrodinger equation and Dirac equation

IV. Spin-orbit coupling 



Schrodinger equation for a single particle  

1. The equation of motion for the matter wave for a 

Newtonian particle.

2. Instead of Newtonian trajectory every observable 

is now to be obtained from the information 

contained in the matter wave Ψ(𝑟𝑟, 𝑡𝑡)
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Schrodinger equation for a single particle  

1. For the Bohr’s stationary state,

2. We have time-independent eigenvalue equation 
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Newtonian Picture 
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Schrodinger equation for a single particle  
3. Rydberg series for hydrogen atom  
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Schrodinger equation for a single particle  
4. The quantities in atomic world   



Schrodinger equation for a single particle  
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Schrodinger equation for a particle  
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Maxwell’s theories for E&M  
1. The fields generated by the sources in the vacuum

2. The potential    
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Maxwell’s theory for E&M  
3. The potential functions are not unique Gauge degree of freedom. Note 

that the scalar and vector potential provide the same E&M field. 
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Example : Spatially uniform E-field  
Show that the following two sets of potential fields produces the same 

electric field 𝐸𝐸 𝑡𝑡 ?    
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Example :
 The Schrodinger equation for the electron in H atom  
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See !!! the potential is NOT unique ?



Disaster !!! : the potential is NOT unique !!!  
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U(1) gauge symmetry
For a particle with the charge 𝑞𝑞 in a given E&M field, the Schrodinger 

equation must be 
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Hamiltonian of a charged particle in E&M

2

Since classical Lagrangian (which brings Lorentz force Law) for a particle in EM field  is
1
2

Canoniacal momentum of the particle is defined as

So hamiltonian is
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This means that what needs for magnetic field contribution is just changing 
classical momentum to canonical momentum.



U(1) gauge symmetry
 Let us think of the Schrodinger equation for a particle with a charge 𝑞𝑞.

 Every physical observables are invariant over the change Ψ → 𝑒𝑒𝑖𝑖𝜃𝜃Ψ for a 

real constant 𝜃𝜃. This is called global phase symmetry. 

 Actually, the Schrodinger field is invariant over the local phase change 

Ψ → 𝑒𝑒𝑖𝑖𝜃𝜃(𝑟𝑟,𝑡𝑡)Ψ, owing to the presence of gauge field.   



U(1) gauge symmetry
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Example. 
A particle in a uniform electric field

For example, a uniform constant electric field in �̂�𝑧 direction. 
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Maxwell’s theory for E&M  
4. The potential functions are not unique Gauge degree of freedom. Note 

that the scalar and vector potential provide the same E&M field.

5. Show that the coupled equation of motions for the potential fields : 
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Maxwell’s theory for E&M  
6. In the Lorentz gauge, we choose 

Now we have two un-coupled wave equations   
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Maxwell’s theory for E&M  
7. In the Coulomb gauge we choose  

And we have  one wave-like equation and the Poisson’s equation for the 

scalar field.  
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Maxwell’s theory for E&M  
7. The solution of the Poisson’s equation   

Can you guess why it is called Coulomb gauge ? Note that the scalar potential is just the 
instantaneous Coulomb potential ?

Then, it might violate the special Relativity causality condition ?

No !!!, we cannot say that way. The E&M fields to satisfy the Lorentz transformation.

The scalar potential decays as ⁄1 𝑟𝑟 from the source. 
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Maxwell’s theory for E&M  
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Maxwell’s theory for E&M  
8. At an infinitely separated field points 𝑟𝑟 → ∞

The vector potential provides propagating transverse radiation field.

The contribution of the Coulomb potential is only to the near field.

3

2
2

2 2

( ) 0

1  =0, 0

r d r
r r

A A
c t

ρ ′
′Φ = →

′−

 ∂
∇ ∇ − = ∂ 

∫




 

 





Maxwell’s theory for E&M  
9. Propagating transverse radiation field (light)

10. It is transversely oscillating plane-waves 
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Light field 
1. Propagating transverse radiation field (light)

2. It is transversely oscillating plane-waves 
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Light field 
3. For example, a monochromatic field 
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1. For example, a material (atom, molecule, solid) under a light field, 

Light-matter interaction   

Material size is typically ~ 1 Angstrom

Wave length of light ~ 500 nm 
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In other word, in the long wave-length limit, the material experience the light 
field as a spatially uniform electric field. 



1. For example, a material (atom, molecule, solid) under a light field, 

Light-matter interaction   
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Coulomb gauge : ∇ � 𝐴𝐴=0 



1. For example, a material (atom, molecule, solid) under a light field, 

Light-matter interaction, up to first order   
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