|. Brief overview of quantum mechanics
ll. Dipole approximation for light-matter interaction
lll. Schrodinger equation and Dirac equation

V. Spin-orbit coupling



Schrodinger equation for a’single particle
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1. The equation of motion for the matter wave for a

Newtonian particle.

Newtonian

2. Instead of Newtonian trajectory every observable ( OH |

is now to be obtained from the information 1d |r(1) op
\dt |p(1) _5H

L

contained in the matter wave W(7,t) ¥




Schrodinger equation for a single particle

A
ot

_h_2V2
2m

1. For the Bohr’s stationary state,
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2. We have time-independent eigenvalue equation
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Newtonian Picture
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Schrodinger equation for a single particle

3. Rydberg series for hydrogen atom
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Schrodinger equation for a single particle

4. The quantities in atomic world

» Scales of quantity in atomic world
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Schrodinger equation for a single particle

Potential energy
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Electrostatic potential



Schrodinger equation for a particle
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Maxwell’s theories for E&M

1. The fields generated by the sources in the vacuum

V-E(r,t)=4npo(r) , V:-B(r,1)=0

VxB(r,t)—lgE(r,t):4—ﬂj(r,t) : VxE(r,t)+lgB(r,t):O
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2. The potential

E(r,7)=—Vo(r,t) i (B’at A(r,t) , B(r,t)=VxA(r,t)




Maxwell’s theory for E&M

3. The potential functions are not unique=>» Gauge degree of freedom. Note

that the scalar and vector potential provide the same E&M field.

A—>A'=A+VAr.1)
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Example : Spatially uniform E-field

» Show that the following two sets of potential fields produces the same

electric field E(t) ?
4
A(r,t) = —c j E(¢)dt'

o(r,t)=0

A(r,1)=0
(0(1’,1‘) =T E(t)



Example :

» The Schrodinger equation for the electron in H atom
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w(r,t) , where @(r)= €

See !ll the potential is NOT unique ?
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Disaster !!! : the potential is NOT unique !!!

Gauge-1

A(r,f)=—ce—t , p=0
V

QN



U(1) gauge symmetry

»For a particle with the charge g in a given E&M field, the Schrodinger

equation must be
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Hamiltonian of a charged particle in E&M

Since classical Lagrangian (which brings Lorentz force Law) for a particle in EM field is

L:lmvz—q¢+g;1-\7
2 C

Canoniacal momentum of the particle is defined as
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So hamiltonian is
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This means that what needs for magnetic field contribution is just changing
classical momentum to canonical momentum.



U(1) gauge symmetry
» Let us think of the Schrodinger equation for a particle with a charge q.

> Every physical observables are invariant over the change ¥ - ¢V for a

real constant 6. This is called global phase symmetry.

» Actually, the Schrodinger field is invariant over the local phase change

Y - DY owing to the presence of gauge field.



U(1) gauge symmetry > A'=A+VA(r,1)
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Example.
> A particle in a uniform electric field
A(r,1) = —ch<r'>dr' A(r,t)=0
o1 =0 o(r,t) =—r-E()

»For example, a uniform constant electric field in Z direction.

(A)=(0,0,—cEt) | [A=(0,0,0)
2=0 Cp=—Ez )




Maxwell’s theory for E&M

4. The potential functions are not unique=>» Gauge degree of freedom. Note

that the scalar and vector potential provide the same E&M field.

5. Show that the coupled equation of motions for the potential fields :
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Maxwell’s theory for E&M

6. Inthe Lorentz gauge, we choose

V-A-A la€D:O
c Ot

Now we have two un-coupled wave equations
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Maxwell’s theory for E&M

(W
7. In the Coulomb gauge we choose i~

V-A=0

And we have one wave-like equation and the Poisson’s equation for the
1 07 10 4r
V? —— |[A=V 1 |
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scalar field.
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Maxwell’s theory for E&M

7. The solution of the Poisson’s equation —

Can you guess why it is called Coulomb gauge ? Note that the scalar potential is just the

instantaneous Coulomb potential ?
Then, it might violate the special Relativity causality condition ?

No !, we cannot say that way. The E&M fields to satisfy the Lorentz transformation.

The scalar potential decays as 1/r from the source.



Maxwell’s theory for E&M




Maxwell’s theory for E&M
8. At an infinitely separated field points r —» o
@ZI%‘IBF'—)O @)) ))\
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The vector potential provides propagating transverse radiation field.

The contribution of the Coulomb potential is only to the near field.



Maxwell’s theory for E&M

9. Propagating transverse radiation field (light)
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10. It is transversely oscillating plane-waves

VeA = Z Z(a(k)ik &e' T 4 cc) =0
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Light field

1. Propagating transverse radiation field (light)

2
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2. Itis transversely oscillating plane-waves
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we have k-£ =0



Light field

3. For example, a monochromatic field CZD =0

ﬁ = A 8" 1 ce. Note Ved=0, ke=0

- | 1 5 1) 7 A i(keF—
E=—="A+= 48" 1 cc. = é(}ge’(k )+ cc.
c Ot c

/ B =Vx A ik x (43¢ T+ ce)
'! h= Wavelangth field




Light-matter interaction

1. For example, a material (atom, molecule, solid) under a light field,

Material size is typically ~ 1 Angstrom

% Wave length of light ~ 500 nm

—

A=A, +ce.n A ge” +ce.

In other word, in the long wave-length limit, the material experience the light
field as a spatially uniform electric field.
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Light-matter interaction

1. For example, a material (atom, molecule, solid) under a light field,

in Oy (r,1) = [L( —ihV —QA) + V(r)_ w(r,t)

ot 2m ]
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Light-matter interaction, up to first order

1. For example, a material (atom, molecule, solid) under a light field,

L oy(r,t) [~ ~
\ ih=— —(HO+H)W(r,t)
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