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Abstract 

The flame instability and cell dynamics of opposed 
nonpremixed tubular flames near radiation-induced extinction 
limit are investigated using high fidelity numerical simulations 

with various initial conditions (IC). When the radiation effect is 
considered, two different extinction Damköhler numbers (i.e. 
large radiation-induced extinction Damköhler number, DaE,R, 
and high stretch-induced extinction Damköhler number, DaE,S) 
are obtained by 1-D analysis with different radiative intensity, I. 
Two critical Das, DaC,C and DaC,O, near DaE,R are identified by 
the linear stability analysis. In 2-D simulations using the 
perturbed IC, it is found that near DaE,R, the flame instability is 

categorized into four different regimes with different instability 
characteristics. When the radiation effect is extremely large, 
decaying or growing oscillatory instability appears although the 
stretch rate is high enough, and the cellular instability occurs in 
the whole Da at which the flame can survive. 

1  Introduction 

In general, flame instability should be avoided because it is 
harmful to combustion systems. The cellular instability, however, 
has been extensively studied due to the needs of its 
comprehensive understanding and attractive features. The 
cellular instability is often observed near extinction limit when 

the effective Lewis number of premixed flames is less than unity. 

The extinction phenomena of nonpremixed flames have been 
investigated by experiments and numerical simulations with 
various configurations [1-7]. Recently, when the Lewis number 
is less than unity, the diffusive-thermal (D-T) instability of 
opposed nonpremixed tubular flames near extinction was 
investigated using high fidelity numerical simulation with the 
linear stability analysis [6]. The experiments were compared 

with 2-D numerical simulations including multicomponent 
transport and detailed chemical kinetics, and these showed good 
agreement [7]. In addition, there have been several studies to 
identify the instability of nonadiabatic flames with radiative heat 
loss. In a stagnant mixing layer with unity Lewis number, three 
types of flame evolution, the decaying, diverging and stable 
limit-cycle solution, were investigated [8]. The structure and 
dynamic response of nonadiabatic counterflow flames with 

nonunity Lewis number were identified by 1-D/2-D simulations 

employing different initial conditions [9]. 

In the present study, therefore, high fidelity numerical 
simulations using various initial conditions based on the linear 
stability analysis are performed to obtain a comprehensive 

understanding of cellular and oscillatory instabilities of opposed 
nonpremixed tubular flames near radiation-induced extinction 
limit. 

2  Problem Formulation  

To obtain extinction information, 1-D analysis is conducted. As 
in refs [5, 6, 8, 9], the governing equation including radiative 
heat loss is formulated as follows: 
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where T, YF, and Yo are the non-dimensional temperature, fuel 
and oxidizer mass fractions, respectively. To investigate the 
effects of radiative heat loss, the radiative heat loss term, 

𝐼 × 𝐷𝑎(𝑇4 − 𝑇∞
4 ), is considered in the energy equation of Eq. 

(1). The I denotes the intensity of radiation, and it is an important 
nondimensional parameter to show the ratio the radiative heat of 
transfer thermal energy production. In the present study, the 
radiation intensity was controlled by using different I values. For 
the details of parameters and boundary conditions, readers are 

referred to [6]. 

 The maximum temperature, Tmax, as functions of Da with four 
different I, is shown in Fig. 1. These isolas are obtained by 
solving Eq. (1) using the Newton-Raphson method with a simple 
continuation algorithm. The upper branch of isolas is well-
burning state and the lower branch represents unstable and 
physically unrealistic. Figure 1 shows that two extinction 
Damköhler numbers, DaE,R and DaE,S, are obtained. The 

flammable region decreases as I increases. It is noted that for 
relatively-large I = 3.76×10-7, DaE,S comes close to DaE,R, which 
implies that for this case, the radiation effect cannot be ignored 
even near high stretch-induced extinction. In the present study, I 
= 10-8 for which the effects of radiation can be ignored near DaE,S 
is adopted to see the ordinary phenomena. In addition to that, the 
results of extremely high radiative intensity, I = 3.76×10-7, is 
only covered in Section 3.3. 
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Figure 1: The maximum temperature, Tmax, as functions of 
Damköhler number, Da, with different radiative intensity, I. 

3  Results and Discussion  

3.1  Linear stability analysis 

The linear stability analysis helps to predict flame instability 
characteristics with good agreement [6]. However, the stability 
analysis near DaE,R is uncommon. In the analysis, the solution 
variables, T, YF, and YO, are defined by the sum of the steady 
solution of the 1-D tubular flame, denoted by an overbar, and 
small harmonic perturbations: 

𝑇 = �̅�(𝑟) + 𝜖𝑇′(𝑟)𝑒𝑖𝑘𝜃+𝜆𝑡, 𝑌𝐹 = �̅�𝐹(𝑟) + 𝜖𝑌𝐹
′(𝑟)𝑒𝑖𝑘𝜃+𝜆𝑡 ,

𝑌𝑂 = �̅�𝑂(𝑟) + 𝜖𝑌𝑂
′ (𝑟)𝑒𝑖𝑘𝜃+𝜆𝑡                         (2) 

where λ is a complex number whose the real part, λR, represents 
the growth rate, k is the wavenumber, and ϵ is the small 
perturbation amplitude. Substituting Eq. (2) into Eq. (1) and 

linearizing the equation, an eigenvalue problem of (𝐀 −
𝜆𝐁)𝐱′ = 0  is then obtained by discretizing, where 𝐱′  is the 
discretized solution vector including T ,́ YF ,́ and YO .́ The 

eigenvalues, 𝜆 = 𝜆𝐼𝑖 + 𝜆𝑅 , of perturbed governing equations 
play an important role to identify flame instability, because if λR 
is large enough to have an effect to the solution, then the 
instability can occur. If λI is zero, the non- or cellular instability 

depends on the sign of λR. Similarly, if λI is nonzero, the growing 
or decaying oscillatory instability rests on whether λR is positive 
or negative. In addition, the cell number is related by the 
wavenumber, kmax, at which attains its maximum value for a 
given Da. Therefore, prior to conducting 2-D simulations, the 
linear stability analysis is conducted to find the critical 
Damköhler numbers which can distinguish the cellular and 
oscillatory instabilities. 

The largest growth rate, λR, as functions of wavenumber, k, and 

Damköhler number, Da, is as shown in Fig. 2. The graph 
gradually moves upward with increasing Da, and finally λR at k 
= 0 has positive value (Fig. 2c). Two critical Damköhler numbers 
are obtained: thresholds of cellular instability, DaC,C = 5.76×107 
(Fig. 2a), and growing oscillatory instability, DaC,O = 6.17×107 
(Fig. 2b). Therefore, it may be conjectured that the cellular 
instability occurs if Da is larger than DaC,C, and the growing 
oscillatory instability first appears at DaC,O.  

The wavenumber, kmax, decreases gradually from 28.8 at DaC,C 
with increasing Da, and λR also increases at kmax. As mentioned 
above, kmax is related to the cell number. Therefore, it can be 
expected that the cell number decreases as Da increases. The 
impact of oscillation also reduces the time for the occurrence of 
the D-T instability, because the region of positive λR increases. 

 

Figure 2: The largest growth rate, λR, as functions of 
wavenumber, k, for different Damköhler numbers, Das. Dotted 

segments mean the imaginary part of λ ≠ 0. 

3.2  Effects of small amplitude disturbance 

The fundamental characteristics of nonpremixed tubular flames 
are obtained using the perturbed initial condition (IC) with a 
fixed Da. The perturbed IC is initialized by a well-burning 
tubular flame having small (~Ο(ε)) amplitude disturbance from 

1-D solutions. The perturbation amplitude, ε, of 10-5 is selected 
to make a minimized condition. 

The variation of the maximum temperature with numerical time 
is as shown in Fig. 3. The cellular instability can be identified by 
a sudden rise of temperature. Once the cellular instability occurs, 
the maximum temperature does not change anymore in time. 

Note that the oscillatory instability, therefore, can be observed 
only during the early stage of simulations. The cellular instability 
can be distinguished by the DaC,C from the linear stability 
analysis in Fig. 3a. Likewise, it is verified in Fig. 3b that DaC,O 
divides into decaying and growing oscillatory instability. The 
oscillatory characteristics such as the amplitude and duration of 

the oscillation become prominent as the positive region of 𝜆𝑅 
increases with increasing Da. As a result, the oscillation 
promotes the occurrence of the cellular instability. In Fig. 3c, the  



 

 

Figure 3: The variation of the maximum temperature, Tmax, with 
time: (a) the decaying oscillation, (b) the growing oscillation 

with cellular instability, and (c) the extinction.  

 

flames of which Da is greater than DaC,O cannot sustain from the 
growing oscillation, and finally are extinguished although the 
corresponding 1-D solution exists. 

The summary of numerical simulations with linear stability 
analysis near large radiation-induced extinction Damköhler 
number, DaE,R, is shown in Fig. 4. Depending on the instability 

characteristics, the vicinity of DaE,R is divided into four regimes 
by two critical Das: DaC,C and DaC,O, and DaE,P , which denotes 
the 2-D extinction Da using the perturbed IC with a fixed Da 
(=6.28×107), as shown in Fig. 4: Regime I. ND (Da < DaC,C), 

Regime II. CD (DaC,C ≤ Da < DaC,O), Regime III. CG (DaC,O 

≤ Da < DaE,P), and Regime IV. EG (Da ≥ DaE,P). In first 

column of table, N, C, and E denote noncellular, cellular, and 
extinction, respectively. In second column, D and G denote 
decaying and growing oscillation, respectively. Note that it is 
reasonable to predict the 2-D simulation outcome wherever the 
vicinity of DaE,S and DaE,R through a 1-D linear stability analysis 
with good agreement. 

 

 

Figure 4: The summary of numerical simulations with linear 
stability analysis near large radiation-induced extinction 
Damköhler number, DaE,R: N (noncellular flame), C (Cellular 
flame), E (Extinction), D (Decaying), and G (Growing) 

 

Figure 5: Temperature isocontours using the perturbed IC at (a) 
Da = 5.8×107 and (b) Da = 1.74×109. 

 

It is possible to make the cellular flame survive at Da > DaE,R, 
if the Da increases successively with previous solution. To find 
a global extinction Da, 2-D simulations are conducted using the 
perturbed IC with increasing Da from DaC,C gradually. Figure 5 
shows the temperature isocontours of initial flame at Da 
5.80×107 and (b) the cellular flame closed to global extinction 

Da = 1.74×109, respectively. Decreasing each cell size as shown 
in Fig. 5, the maximum temperature does not change until Da = 
109 due to the balance between radiative heat loss and reaction 
by high Da. However, the flame temperature decreases as Da 
increases till the global extinction Da, 1.74×109. 

3.3  Effects of extremely high radiative intensity 

Daa kmax
b Ncell

c Signd Oscillatione 

38000 10.0 E + G 

38732 10.1 10 + G 

50000 10.8 11 - D 

60000 11.2 11 - D 

70000 11.6 12 - D 

80000 11.8 12 - D 

88600 11.9 12 + G 

90000 11.9 11 + G 

100000 11.8 E + G 

a. Damköhler number, two extinction Das are 37363 and 112500, respectively. 

b. Wavenumber of the maximum largest growth rate. 

c. Cell number, E: extinction. 

d. Sign of maximum largest growth rate when the imaginary part, λI, is not equal to 0. 

e. Oscillation characteristics, D: decaying; G: growing. 

Table 1: Flame instability characteristics for extremely high 
radiative intensity, I = 3.7×10-7, in overall Da region. 



 

Generally, the D-T instability only occurs near an extinction 

limit when the Lewis number is less than unity, because the 
flame cell formation by fuel focusing effect appears to help that 
the flame sustains from the harsh environment. However, if the 
intensity of radiation is extremely high, I = 3.76×10-7 in the 
present study, the possibility which induce the D-T instability is 
shown in all domain. The flame instability characteristics for 
extremely large radiative intensity, I = 3.76×10-7, in the entire 
range of Da are written in Table 1. Two extinction Das obtained 

from 1-D simulations are DaE,S = 37363 and DaE,R = 112500, 
respectively. The results near DaE,R, do not seem to be special. 
However, near DaE,S, the decaying and growing oscillatory 
instability are observed, and the tendency is similar to the 
vicinity of a large radiation-induced extinction. Two DaC,O are 
observed, no DaC,C. It is also noticeable that the nonpremixed 
tubular flames under extremely high radiation always exist with 
the cellular instability.  

4  Conclusions 

 The flame instability and cell dynamics of nonpremixed tubular 
flames with radiative heat loss are investigated using 2-D 

simulations with the linear stability analysis based on 1-D 
analysis. Two different extinction Das, high stretched-induced 
and radiation-induced extinction Da, are obtained as various 
intensities of radiation, I. The perturbed initial condition is used 
to elucidate the fundamental instability characteristics near DaE,R. 
In conclusion, the vicinity of DaE,R is divided into four regimes 
as shown in Fig. 4, Regime I. ND (Da < DaC,C), Regime II. CD 

(DaC,C ≤ Da < DaC,O), Regime III. CG (DaC,O ≤ Da < DaE,P), 

and Regime IV. EG (Da ≥ DaE,P), and these can be predicted 

by the linear stability analysis with good agreement. The global 
extinction Da is extended by the cellular instability. If radiative 
heat loss is relatively too large, I = 3.76×10-7, the radiation 
effects cannot be ignored near high stretched nonpremixed 
tubular flames, since the oscillatory instability is observed. In the 

specific condition, the cellular instability appears in overall Da. 

5  Acknowledgment 

This work was supported by the Space Core Technology 
Development Program (No.2015M1A3A3A02027319) and 
Basic Science Research Program (No.2015R1A2A2A01007378) 
through the National Research Foundation of Korea grant 
funded by the Ministry of Science, ICT and Future Planning. 

References 

[1] M. Short, J. Buckmaster, S. Kochevets, Combust. Flame 125 
(2001) 893-905. 

[2] S. Hu, P. Wang, R. W. Pitz, Proc. Combust. Inst. 31 (2007) 
989-996. 

[3] S. Hu, R. W. Pitz, Combust. Flame 156 (2009) 51-61. 

[4] S. Hu, R. W. Pitz, Y. Wang, Combust. Flame 156 (2009) 90-
98. 

[5] S. W. Shopoff, P. Wang, R. W. Pitz, Combust. Flame 158 
(2011) 876-884. 

[6] H. S. Bak, S. R. Lee, J. H. Chen, C. S. Yoo, Combust. Flame 
162 (2015) 4612-4621. 

[7] C. A. Hall, R. W. Pitz, Combust. Flame 36 (2017) 1595-1602. 

[8] C. H. Sohn, J. S. Kim, S. H. Chung, K. Maruta, Combust. 

Flame 123 (2000) 95-106. 

[9] J. R. Nanduri, C. J. Sung, J. S. T’len, Combust. Theory 

Model. 9 (2005) 515-548. 


