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1 Introduction 
The characteristics of the diffusive-thermal instability of nonpremixed tubular flame have been 

extensively investigated by experiments and numerical simulations with various burners [1-5]. In 
general, the diffusive-thermal instability of nonpremixed tubular flame occurs near the extinction limit 
when the Lewis number of fuel is less than unity. At the vicinity of extinction, small perturbations can 
induce alternating locally-weak and strong reaction regions of the tubular flame, subsequently leading 
to the formation of flame cells. This is primarily attributed to unbalance between the energy gain by 
fuel mass flux and the loss of heat from the flame’s point of view. Temperature at the edge of a flame 
cell becomes higher than that at the middle part of it due to the strong focusing effect of fuel mass flux 
at the edge.  Due to the same reason, the flame cells can survive beyond 1-D flame extinction limit [5]. 
In the present study, the instability characteristics of opposed nonpremixed tubular flames and the 
flame cell dynamics are investigated using 2-D high-fidelity numerical simulations together with the 
conventional linear stability analysis. 

2 Numerical methods and initial conditions 
First, 1-D non-dimensional governing equations of temperature and mass fractions of fuel and 

oxidizer in the radial direction are formulated with constant density assumption, which are given by:  
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where the boundary conditions are as follows: 
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The radial velocity ur  is given by [1]: 
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where rs and Q denote the location of the stagnation plane and the pressure eigenvalue, respectively, 
LeF is the fuel Lewis number, LeO is the oxidizer Lewis number, Da is the Damköhler number, q is the 
heat release rate, aT  is the activation energy, 1T  is the fuel stream temperature, and 2T  is the oxidizer 
stream temperature. The subscript 1 and 2 denote the inner fuel and outer oxidizer nozzles. To 
investigate the diffusive-thermal instability of the tubular flames similar to the experiments, q = 1.2, 
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aT =8, LeF = 0.3, LeO = 1.0, ,2F OY  = 1.0, ,1O FY  = 0.36, 1r = 20, 2r = 100, and 1T = 2T = 0.2 are specifited. 

The instability characteristics at different flame locations are also investigated by varyng the ratio of 
inner to outer velocity with the same stretch rate, 0.03927  . LeF of 0.3 is also specified to induce 
the cellular instability of the tubular flames near the extinction limit as in experiments. 

Simultaneous algebraic equations obtained by discretizing Eq. (1) with the finite difference method 
for a given Da are solved by a Newton-Raphson method and then, the solutions at different Da are 
solved with a simple continuation method. Figure 1 shows the maximum flame temperature as a 
function of Da, so-called “C-curve”. The upper part of the C-curve represents the ''near equilibrium 
regime'' in Liñán's classification of diffusion flame regimes. The lower part together with the region 
near the extinction point can be classified as ''premixed flame regime'' such that the characteristics of 
premixed flames such as cellular instability can be observed in nonpremixed tubular flames. The 1-D 
extinction Damköhler number, DaE, is found to be approximately 13950, 11977, and 10542 for 

,1 ,2 1, 2, and 4r ru u  . 

 
Figure 1. Maximum flame temperature as a function of Damköhler number for ,1 ,2 1, 2, and 4r ru u  . 

To investigate the diffusive-thermal instability of 2-D opposed nonpremixed tubular flames, Eq. (1) 
is extended into 2-D configuration by incorporating the azimuthal direction and by assuming that there 
is no convective flow in the azimuthal direction: 
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To perform 2-D simulations, two different initial conditions (IC) are used to identify characteristics 
of cellular instability and dynamics with different initial states. Figure 2 shows the initial temperature 
fields of two different ICs: ''perturbed IC'' and ''C-shaped IC''. For the perturbed IC, 1-D solutions of T, 
YF, and YO at a given Da are first duplicated along the azimutal direction from 0 to 2π, and then, small 
pertubation of sine shape is added on top of the temperature field using Eq. (3). The perturbation 
amplitude constant, A, of 10-5 is adopted because the instability characteristics of tubular flames such 
as number of cells do not change anymore when the value of A becomes smaller than 10-5. For the C-
shpaed IC, two solutions of reacting and nonreacting flows at the same Da are smoothly merged using 
Eq. (4). This IC is used to simulate the effect of finite amplitude of perturbations on the evolution and 
dynamics of flame cells. 
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x means solution variables where 1  = 0.5π, 2  = 1.5π, and σ = 0.1π. The subscripts B and C represent 
intensely-burning and cold-flow solutions. 
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Figure 2. Two different initial temperature fields: (a) the perturbed IC and (b) the C-shaped IC. 

For 2-D simulations, an 8th-order central difference scheme for spatial derivatives and a 4th-order 
Runge-Kutta method for time integration method are used with the massage passing interface (MPI) 
for parallel computing [7]. On the boundaries, Dirichlet conditions are specified in the radial direction 
and periodic conditions are imposed in the azimuthal direction. The grid of 400×1200 for the radial 
and azimuthal directions is used, and the time step is 10-3. 

3 Cellular instability in 2-D simulations 
The 2-D opposed nonpremixed tubular flame with different initial conditions are simulated at 

various Da for ,1 ,2 1, 2, and 4r ru u  . Figure 3 shows the maximum temperature of 2-D solutions on 

top of 1-D “C-curve” and the number of flame cells as a function of Da with (a) perturbed IC and (b) 

C-shaped IC for ,1 ,2 1, 2, and 4r ru u  . For each cases with C-shaped IC, 2-D simulations are carried 

out by decreasing Da from 18900, 16300, and 14350 until the occurrence of total extinction. Figure 4 

shows the temperature isocontours for perturbed IC cases with ,1 ,2 1, 2, and 4r ru u   at each DaE. 

 
Figure 3. The maximum flame temperature and cell number as a function of Da for ,1 ,2 1, 2, and 4r ru u  with 

(a) perturbed IC and (b) C-shaped IC. 
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Figure 4. The temperature isocontours for cases with ,1 ,2 1, 2, and 4r ru u   (from left to right) at each DaE.  

The occurrence of flame instability can be identified through temperature jump. For cases with 

perturbed IC with ,1 ,2 1r ru u  , the cellular instability occurs approximately below Da = 14412 to DaE, 

and the number of cells is found to be 7 regardless of Da. For cases with ,1 ,2 2r ru u  , the onset of 

instability is Da = 12360, and 9 flame cells appear except nearly DaE. For cases with ,1 ,2 4r ru u  , the 

cellular instability is observed from Da = 10865, and 11 flame cells are observed through the entire 
instability range except closely DaE. The maximum temperatures of the flame cells are slightly 
increased with decreasing Da for all cases. In general, the flame cell size is reduced with decreasing 
Da and as such, the temperature of flame cells are increased due to more fuel focusing effect on the 
flame cells. 

As shown in Fig. 3, for C-shaped IC cases, the cellular instability occurs approximately at Da = 

18900, 16300, and 14350 for ,1 ,2 1, 2, and 4r ru u   and just one large cell like ''horseshoe-shaped'', Fig. 

6 (d). The detailed dynamics of this cellular flame will be discussed later in section 5. As Da is 
decreased, the number of flame cells is suddenly increased to 5, 7, and 8 while the maximum 
temperature of the cells is larger than that of 1-D case. As  Da is further decreased from 18900, 16300, 

and 14350 for ,1 ,2 1, 2, and 4r ru u   similar to the procedure in experiments [2, 3], it shows the same 

tendency with previous cases down to the extinction limit. However, 2-D extinction limit is greatly 
extended up to Da = 7690, 6860, and 6000, respectively. At the regime of Da < DaE, the temperature 
of tubular flame is increased continuously with decreasing Da and the flame cell number remains the 
same. 

4 Linear stability analysis 
Linear stability of Eq. (1) is investigated by the linear stability analysis [6] to figure out the relation 

between the linear instability characteristics of 1-D flames and the instability of 2-D tubular flames. 
For linear stability analysis, the temperature and species mass fractions can be defined by a summation 
of the mean solution variables and perturbation in radial, azimuthal direction, and time: 
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where the bar denotes the mean of variables, ε is a small quantity related to perturbation, λ is the 
amplification factor in time, and k is the wavenumber in the azimuthal direction.  Substituting Eq. (5) 
into Eq. (2) yields the following equations:  
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Equation (6) is discretized by the finite difference approximation, which leads to an eigenvalue 
problem of  x 0  A B , where x′ is the solution vector of T′, YF′, and YO′. The eigenvalue, λ, can 

be obtained for different wavenumber at a given Da.  
Figure 5 shows the largest real eigenvalue as a function of the wavenumber for different Da with 

,1 ,2 1, 2, and 4r ru u  . The thin dotted segmemts represents the imaginary part of λ ≠ 0. The existence 

of positive real eigenvalues implies that the cellular instability of tubular flame can occur because the 
small perturbation Eq. (5) can grow exponentially in time. From the results, the range of unstable 

tubular flame is approximaetly from Da = 14412, 12360, and 10865 to DaE for ,1 ,2 1, 2, and 4r ru u  , 

respectively. These values are almost identical to those from 2-D simulations. The maximum 

eigenvalues occur at the wavenumber of approximately 7.0, 9.0, and 11.0 for ,1 ,2 1, 2, and 4r ru u  , 

respectively, which exactly coincide with the flame cell number of 2-D simulations. These results 
suggest that the onset of instability and the number of flame cells in 2-D tubular flames can be 
precisely predicted through the linear stability analysis of the corresponding 1-D flames. However, 
this result cannot be applicable to the charcteristics of tubular flame with C-shaped IC. This is 
primarily because the disturbances induced by the C-shaped IC are ~ O(1)  not O() and as such, the 
assumption of the linear stability analysis does not hold in this case. Therefore, the instability and the 
number of flames cells can depend highly on the shape and intensity of finite-amplitude disturbances. 

 
Figure 5. The largest Re(λ) as a function of wavenumber for different Da with ,1 ,2r ru u = (a) 1 , (b) 2, and (c) 4. 

5 Edge flame speed 
The edge flame speed, Sd, can be defined by a sum of reaction, Sd

R, radial and azimuthal direction 
diffusion components, Sd,r

Dand Sd,θ
D of a specified species [8]:  
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In this case, Sd is evaluated at the intersection of YF=0.0765 isoline and the stagnation plane. For a case 

using C-shaped IC at Da = 18900 with ,1 ,2 1r ru u  , two edge flames developed form the initial 

condition propagate towards each other as shown in Fig. 6. At the steady state, however, they stand 
still at a short distance instead of merging to form a steady tubular flame. Figure 7 shows the temporal 
evolution of the displacement speed and its components. It is readily observed from the figure that 
after two edges are developed from the initial condition, they propagate toward each other with 
constant Sd. As they approach each other, Sd is decreased and finally vanishes when they stop 
propagation. When the two edges come to a stop, the reaction in Sd balances the diffusion as can be 
expected.  

6 Conclusions 
The characteristics of diffusive-thermal instability of opposed nonpremixed tubular flame were 

investigated with high-fidelity numerical simulations and linear stability analysis. 1-D steady tubular 



Park, H. S.                                                        Diffusive-Thermal Instability of Nonpremixed Tubular Flame 

10th ASPACC – July 19-22, 2015 - Beijing 6 

flame solutions for ,1 ,2 1, 2, and 4r ru u   with same stretch rate, 0.03927  , were first obtained by 

solving 1-D governing equations with the Newton-Raphson method with a simple continuation 
method. The 1-D solutions were then used for the initial conditions of 2-D simulations and steady-
state values for the linear stability analysis. It was found from 2-D simulations that the diffusive-
thermal instability occurs near the extinction points and the number of flame cells and maximum 
flame temperature of the cells are highly dependent on the radial location of stagnation plane and the 
flame cell size. It was also found that the linear stability analysis can predict precisely the number of 
flame cells and the Da at the onset of instability. From two different initial conditions, the diffusive-
thermal flame instability is found to be quite sensitive to the initial conditions, especially those with 
finite-amplitude of disturbance. From the displacement speed analysis, the edge flame speed vanishes 
when the two edge flames stand still at a distance, forming a large flame cell. 

 

 
Figrue 6. The temperature isocontour variations for a case using C-shaped IC at Da = 18900 with ,1 ,2 1r ru u  . 

 
Figrue 7. The temporal evolution of the displacement speed, Sd, and its components at Da=18900 for 

,1 ,2 1r ru u   
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