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Goal of this chapter

The magnetic moments in solids are associated with electrons.

The microscopic theory of magnetism is based on the quantum mechanics of
electronic angular momentum, which has two distinct sources — orbital motion
and spin.

They are coupled by the spin-orbit interaction.

Free electrons follow cyclotron orbits in a magnetic field, whereas
bound electrons undergo Larmor precession, which gives rise to orbital
diamagnetism.

The description of magnetism in solids is fundamentally different depending on
whether the electrons are localized on ion cores, or delocalized in energy
bands.

A starting point for discussion of magnetism in metals is the free-electron
model, which leads to temperature-independent Pauli paramagnetism and
Landau diamagnetism.

By contrast, localized noninteracting electrons exhibit Curie paramagnetism.



Basics on electrons

p=h/ki,

This de Broglie relation, combined with Niels Bohr’s postulate that the
angular momentum of electrons in atomswas quantized in multiples of

FI&

r X p| = nh

led to the idea that the allowed orbits of electrons in atoms were
stationary states with an integral number of de Broglie wavelengths.
This opened the door to the development of quantum physics.

Two basic approaches are wave mechanics, due to Schr odinger,
and matrix mechanics, due to Heisenberg.
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Basics on electrons

HY = W

eigenstates

eigenvalues

The eigenfunctions are orthogonal and form a basis of the system

The Heisenberg formulation which is especially useful in magnetism
when only a small number of eigenstates are relevant, uses an n x n
matrix representation for the Hamiltonian.

All physical observables can be represented by matrix operators. The
eigenstates are n x 1 column vectors, and the eigenvalues are real
numbers. The procedure to determine them often involves diagonalizing
a matrix to find its eigenvalues.

Corrections due to small additional terms in the Hamiltonian are
deduced from perturbation theory.



3.1 Orbital and spin moments

N

ez

Magnetism is intimately connected with angular momentum of
elementary particles, so the quantum theory of magnetism is closely linked
to the quantization of angular momentum.

Protons, neutrons and electrons possess an intrinsic angular momentum
=h known as spin,

Nuclear spin creates much smaller magnetic moments than electronic spin
because of the much greater nucleon mass.
Electrons are the main source of magnetic moments in solids.



3.1 Orbital and spin moments

Table 3.1. Properties of the electron

Mass m, 9.109 x 107! kg
Charge —e  —1.6022 x 107" C
Spin quantum number s 1/2

Spin angular momentum h 5273 x 107 T s
Spin g-factor g 2.0023

Spin magnetic moment m  —9285x 107* Am’

Classical radius pge?/4mm, r,  2.818 x 107" m



3.1.1 Orbital moment

The orbital moment can be introduced in terms of the
Bohr model of the atom, where electrons revolve

around a nucleus of charge Ze in circular orbits m
: : Nucleus
under the influence of the Coulomb potential =" =
Ze
w, =—2Le/4megr W, o~

T =2nr/v
m=1
| = —c¢/1 A
angular momentum
1 . -
—y¢F XV {=m,r xXv
e
m=—-——-1=~,.
2m,
m = y4 y is —(e/2m,)

the proportionality factor y is known as the gyromagnetic ratio.



3.1.1 Orbital moment

The orbital angular momentum is quantized in units of h, in such a way
that the component of m in some particular direction, chosen as the z-
direction, is

67‘

meh, where my =0, 1,2, ...

2m,

The natural unit for electronic magnetism is therefore the Bohr magneton,
defined as

eh

= )
2m,

M B
l g =9.274 x 1074 A m?

The remarkable difference between an electron in a qguantum-mechanical
stationary state and a classical charged patrticle is that the former can
circulate indefinitely in its orbit as some sort of perpetual motion or electronic
supercurrent — whereas the classical particle, or an electron in an
unquantized orbit, must radiate energy on account of its continuous
centripetal acceleration. Classical orbital motion will soon cease as a result
of radiation loss.



3.1.1 Orbital moment

g-factor

the ratio of the magnitude of the magnetic moment in units of uB
to the magnitude of the angular momentum in units of h:

(Imf/mp) = (g

Hence g is exactly 1 for orbital motion.

tl/n)

The Bohr model, a simplified version of the quantum mechanics of the
atom, provides us with the natural units of length and energy for atomic
physics. S
2
e’ /4megr? = mov?/r
m,vr = nh,

3
r = n-ay

A
dmegh”

oy = > the Bohr radius
m.,e



3.1.2 Spin moment

The electron possesses intrinsic spin angular momentum with quantum number

)
b | —

There is an associated intrinsic magnetic moment, unrelated to any orbital
motion, which can only adopt one of two discreet orientations relative to
a magnetic field.

/'_

the image of a spinning ball
of charge is ultimately misleading

N

The mysterious built-in angular momentum emerges as a consequence of
relativistic quantum mechanics



3.1.2 Spin moment

All fermions have spin and an associated magnetic moment.
It turns out that the magnetic moment associated with the electron spin is
not a half, but almost exactly one Bohr magneton.

The gyromagnetic ratio y 1s —(e/m,)

g-factor 1s close to 2

t?
m= —

S.
m,

The spin magnetic quantum numberis m; = :I:%

so there are only the two possible angular momentum states.
The component of spin along any axis is |
+17

2

m, = —

<

mh withm, = +—.
m, 2



3.1.2 Spin moment

AN Torsion fibre

\

Ferromagnetic rod

The reality of the link between magnetism and angular
momentum, known as the Einstein—-de Haas effect, was
demonstrated in an experiment carried out by John
Stewart in 1917.

the spontaneous magnetization M; = 1710 KAm™!

the g-factor 2.09

the magnitude of the ferromagnetic
moment is only 2.2uB per atom.

the ferromagnetic moment of iron corresponds to the
spin moment of barely two of them.

All the others form pairs with oppositely aligned spins,
and contribute nothing.



3.1.3 Spin-orbit coupling

Generally, an atomic electron possesses both spin and orbital angular
momentum.

They may be coupled by spin-orbit interaction to create a total
electronic angular momentum j , with resultant magnetic moment

............... m=yjJ.
- BSO ;
; ge
IL L .'.I_-"I ]” — Z'E?IJ/ZFTIH
Ze el ST ] Xz
y
spin-orbit interaction from Holn
the viewpoint of the Bm _ u{:}Zt"lﬁ/ﬁlm"z

electron.

The electron’s magnetic moments associated with | and s are oppositely
aligned.

A
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3.1.3 Spin-orbit coupling

2 74
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The Z variation means that the spin—orbit interaction, while weak for light
elements becomes much more important for heavy elements and
especially for inner shells.

The associated magnetic field is of order 10 T

The correct version of the spin—-orbit interaction, resulting from a
relativistic calculation, is given in §3.3.3.
The expression (3.12) is modified by a factor 2

the spin-orbit Hamiltonian

'-.)‘l A
H,, = M - 8,



3.1.4 Quantum mechanics of angular momentum

The Bohr model is an oversimplification of the quantum theory of angular
momentum. In quantum mechanics, physical observables are represented

by differential operators or matrix operators, which we denote by bold
symbols with a hat.

p = —ihV

p°/2m = —h*V?/2m
07]{!(., — ;'\.-.r Mff
The allowed values of a physical observable
the eigenvalues, A;
the possible observable states of the system.

r; are the eigenfunctions,



3.1.4 Quantum mechanics of angular momentum

The angular momentum operator

[ =r x p,

[ = —ih(yd/dz —zd/dy)e, —1(z0/dx —xd/dz)e, —1(xd/dy — yd/dx)e;.

0
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2
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11(sin¢gad/d6 + cotf cospa/dg),

?}, = 1i(—cos ¢pd/d6f + cotf sin pd/dg),
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3.1.4 Quantum mechanics of angular momentum

An alternative way of representing angular momentum operators, which
is invaluable when considering the spin of electrons, is with matrices.

Square hermitian matrices

The magnetic systems have a small number v of magnetic basis
states, each denoted by a different magnetic quantum number m,,
and they can be represented by v x v square hermitian matrices.

For orbital angular momentum with quantum number |,

vis (2 + 1)

Similarly for spin, the electron with

+

b | —

g

_ 1
S—E

2x 2 spin operator §

7))
-

)]
e

)]

]



3.1.4 Quantum mechanics of angular momentum

S =

b —

m, = :I:%

]

)
-

>
et

)]

2x 2 spin operator §

The eigenvalues 17i and — 17

The eigenvectors

‘spin-up’ )
0

U
|:1i| spin-down )

The arrow indicates the direction of the magnetic moment.
The negative charge of the electron means (somewhat confusingly) that
T is spin down and vice versa.



3.1.4 Quantum mechanics of angular momentum

The Pauli spin matrices: The eigenvalues /i and—%h
) 10 l The eigenvectors 1 0
S, = ;FI
0 —1]-~ 0 1
) 0 1 l spinors.
S, = =h
! R O} 2
§y = _1 0 :| Eﬁ

SR



3.1.4 Quantum mechanics of angular momentum

The fundamental property of angular momentum in quantum mechanics is
that the operators representing the x, y, and z components satisfy the
commutation rules

S., 8, and §, satisfy the commutation rule,
eigenvalues :I:%ﬁ

These operators have to be Hermitian so that their eigenvalues are real.
A neat way of summarizing the commutation relations is

§ X § =1hS.



3.1.4 Quantum mechanics of angular momentum

The differential operators for orbital angular momentum, (3.15), also obey
these commutation rules, as all angular momentum operators must.
Two operators are said to commute if their commutator is zero.

8., 8,] = ih8,. [8,.8.]=in&,. [5..8,]=ins,.

In quantum mechanics, only those physical quantities whose operators
commute can be measured simultaneously.

The three components of angular momentum do not commute and
therefore cannot be measured at the same time.

A precise measurement of the z component, for example, means that the

X and y components are indeterminate.

However, it is possible to measure the total angular momentum and any one
of its components (but conventionally the z component) simultaneously.

The square of the total spin angular momentum,

_(L Y 3n° /4.

0 1 It commutes with §,, §, and §;

§* with eigenvalues s(s + 1)i?

[
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[
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3.1.4 Quantum mechanics of angular momentum

The eigenvalue of the square of the total angular momentum

(§%) = (i|8%|i) is 3K?/4 for both eigenstates m and m

”~ .ﬁj - - -
§, and §° are diagonal, and diagonal matrices always commute.

m.=+1/2

m,=-1/2




In the Dirac notation, (7|d| ) isthe 7, j matrix element of the operator a. The diagonal components
are (i |a|7). When the matrix has only diagonal terms, which can always be achieved by a suitable
transformation if the matrix is Hermitian, the diagonal matrix elements are the eigenvalues. If 3
is the Hamiltonian, the eigenvalues are the energy levels of the system. |7), known as the ‘ket’,
is the eigenfunction — a column vector in the matrix representation. (i|, known as the ‘bra’, is
the complex conjugate row vector. Their product, the Dirac braket, (i|i1) = 1 for normalized
eigenfunctions.



3.1.4 Quantum mechanics of angular momentum

} The two states with m, = £1

have opposite magnetic
moments and a Zeeman
m-+12  Spliting of the two energy levels
— 2,11.88' develops in a magnetic field B.
m,=—1/2

Hy; =—m-B=(e¢/m,)s - B

eigenvalues gugmysB ~ xugB

To summarize, an electron with spin quantum number s = 3 has total angular

momentum +/37/2. There are two spin states, m, = :I:% with a projection of
the angular momentum along a specified direction Oz of :I:%E. The states are
degenerate in zero field, but split in a magnetic field. Alternative notations for

the two spin states of the electron are |%) and |—%), |l) and 1), or o and .



3.1.4 Quantum mechanics of angular momentum

The magnetic moment operator of the electron ﬁ‘l‘ In units of Bohr magnetons)
is proportional to the associated angular momentum (in units of h ) and can
be represented by a similar matrix, with the proportionality factor (g-factor) of

1 for orbital and 2 for spin moments. e
m= —

L.
2m,

The total magnetic moment of an electron is generally a
vector sum of the spin and orbital magnetic moments: m= —

o= —(ug/h)(I +23).

The Zeeman interaction of these moments with an applied field B

A

Hz = (ug/h)1 +28)- B.



The Stern—-Gerlach experiment
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3.2 Magnetic field effects

The effects of a magnetic field on an electron are to modify its linear or
angular motion, and to induce some magnetization in the direction of

the field, as a result of Boltzmann population of the energy levels
obtained from (3.21).

In this section, we discuss the effects of a magnetic field on the electron
motion semiclassically.



3.2.1 Cyclotron orbits

The Lorentz force —ev X B

/

1/

/

Newton’s second law
> 2
f=m|/r =ev,B

the cyclotron frequency

. _ eB
fe=vy1/2mr fe =
2mm,




3.2.1 Cyclotron orbits

" Perey Spencer, the invertar of the first microwave oven, perceived hig idea after Warld War IT fram radar technalagy
Electron z developed during the war, Mamed the Sasbrange, it was first sold in 1947, Raytheon later licensed its patents for a home-

" use microwave oven that was first introduced by Tappan in 1955, but these units were still too large and expensive for
general home use, The countertop microwave oven was first introduced in 1967 by the Amana Corporation, which was

acquired in 1965 by Raytheon,

| can finally
cook food
without the
hassle!
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3.2.2 Larmor precession

If an electron is constrained somehow to move in an
orbit, it has an associated magnetic moment

m:]/ff

y 1s the gyromagnetic ratio

The effect of the magnetic field is to exert a torque

F=mx B Joseph Larmor, 1857-1942.
[ = de/dr
dm R
— =Yym X bD.
dr
When B is along the z-axis, the vector product in Cartesian coordinates gives
dm, dm, dm,
— ym}_,B = —ym,B d_ = 0.
[

dr dr



3.2.2 Larmor precession

dm, dm, dm,
= ym,B — = —ym, B — = 0.
dr : dr dr
m(f) =(msinfsinwyt, msinf coswyt, mcosb),
B
A wr =yB
-------- - -‘-----"h
U *am 1he magnetic momentmtherefore precesses
around the applied field direction at the Larmor
frequenc
a y ) v B
JL — S -
21

The precession continues indefinitely if there is no way for the

system to dissipate energy, and the angular momentum
remains constant.

Note that the Larmor precession frequency for an orbital
moment is just half the cyclotron frequency,

y = —e/2m, y = —e/m,

whereas it is equal to the cyclotron frequency for a spin moment

I'=mxB



3.2.3 Orbital diamagnetism

There is some angular momentum, and therefore a magnetic moment is
associated with the precession of the electron orbit induced by the
magnetic field.

By Lenz’s law,
the induced moment is expected to oppose the applied field.

The induced angular momentum

,ﬁ C HIE(ULOOz)
| 7 il i (p%) = (x2) + ()

the mean square radius of the
/B/g Beoi 1| B C : electron’s orbit projected onto
e N (; - e .]

the plane perpendicular to B.
w; =yvB
tibiity 11, M /B m =y~
a susceptibili :

PUbIity [t m =—y°m.(p*)B

2, 2\ 1,
X = —npge (r-)/6m,
y = —(e/2m,)
(rv) =(3/2)(p?)

[‘nJ



3.2.3 Orbital diamagnetism

Table 3.2. Diamagnetic susceptibilities x,, of common ions.

Units are 10~° m3 kg~ (after Sellwood, 1956)

Ht 0 Be?t 0.6 St 1.7 C* 0.1 F 7.2
Lit 1.1 Mg 16 Y* 18 Si** 04 OH™ 88
Nat 2.7 Ca’t 25 La’t 1.8 Ge** 12 ClI- 92
K+t 42 Sr** 2.1 LYt 12 Sa*t 1.7 Br 56
Rb™ 29 Ba’*t 29 Pb* 14 I 5.1
Cst 29 B 0.2

Cut 24 zZn** 19 APt 09 Ti*f 13 0¥ 94
Agt 28 Cd* 25 Gatt 14 zr*t 14 s 14.8
Aut 25 Hg 23 In*t 21 Hff 1.1 Se* 7.6
NH; 8.0 Pb* 17 Ut 1.0 Te*~ 6.8

In atoms, the effect is dominated by the outer electron shells, which have
the largest orbital radii.
Negative ions therefore tend to have the largest diamagnetic susceptibility

The order of magnitude of the orbital diamagnetic susceptibility x for an
element with n =~ 6 x 10°® atoms m~*

10> —
mass susceptibility xym =x/d, 1077 m°> kg_l Vv (r?) = 0.2 nm



3.2.3 Orbital diamagnetism

Orbital diamagnetism is a small effect, present to some extent
for every element and molecule.

It is the dominant susceptibility when there are no partially filled shells,
which produce a larger paramagnetic contribution due to unpaired
electron spins.

Relatively large diamagnetic susceptibilities are observed for aromatic
organic materials.






the Bohr—-van Leeuwen theorem

Unfortunately, there is an underlying problem with classical calculations of
the response of electrons to magnetic fields. Since the magnetic force f =
—e(v x B) is perpendicular to the electron velocity, the magnetic field
does no work on a moving electron, and cannot modify its energy.

Hence &6w'is zero in (2.92), and it follows that there can be no change of
magnetization.

The idea was set out in the Bohr-van Leeuwen theorem, a famous and
disconcerting result of classical statistical mechanics which states that

at any finite temperature and in all finite electric or magnetic fields, the
net magnetization of a collection of electrons in thermal equilibrium
vanishes identically.

Every sort of magnetism is impossible for electrons in classical physics!
The semiclassical calculation of the orbital diamagnetism works only

because we have assumed that there is a fixed magnetic moment
associated with the orbit.
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The diamagnetic susceptibility of more than half the elements in the
periodic table is overwhelmed by a positive paramagnetic contribution.



3.2.4 Curie-law paramagnetism (localized e)

We now grant the electron its intrinsic spin moment, and examine how
paramagnetic susceptibility arises in the two extreme models of
magnetism, those of localized and delocalized electrons.

The Curie law is

The Curie constant

C = npgu/ks

1.04 604

o
L

o 1 2 3 4 5 100 200 300
X Temperature, T (K)




3.2.4 Curie-law paramagnetism (localized e)

M= 172 electrons per unit volume
m=— 12 n=m"+n"

the induced magnetization along Oz

(" —n¥)ug

The Boltzmann populations of the two energy levels which are proportional
to

_ o B

exp(£upbB/kpl’)

M = cupgl(exp(pugB/kpT) — exp(—pugB/kpT)]
n = clexp(ugB/kpl') +exp(—ugB/kpT)]



3.2.4 Curie-law paramagnetism (localized e)

The average z-component of the moment per atom
(nt —nY)up

(nt + nt)

<mz> —

[exp(x) — exp(—x)]up

(m;) =
[(exp(x) + exp(—x)],
X =pugB/kpT
M = npugtanhx
Atroom temperature  p B < kpT
tanh x ~ x X =ioM/B

x = npopy/kpT



3.2.5 The free-electron model

- m =+ 1/2

Energy,

.-..."_I mS = - 1/2

2u B t

Density of states, D(g) ll_/



3.2.5 The free-electron model

In order to calculate the susceptibility in the opposite, delocalized, limit we
introduce the simplest possible delocalized-electron model for a solid.
The electrons are described as noninteracting waves confined in a box of

dimension L.
The Hamiltonian is the sum of terms representing the kinetic and potential

energy:

H =1[(p*/2m,)+ V(r)]
p=—ihV

—(*2m )V = e
= L% exp(ik - r)

p=nhk
e =h’k?*/2m,



3.2.5 The free-electron model

The boundary conditions, which are periodic for
free-electron waves, restrict the allowed values
of k so that the components

ki(l =x,y,2)=42mn;/L

e, e,
fi o~ Ky

Since indistinguishable electrons obey Fermi-Dirac
statistics, each quantum state represented by the
integers n,, n,, N.can accommodate at most two
electrons one %, the other |

Each state has two-fold spin degeneracy.

At zero temperature the N = nL3 electrons in the box occupy all the
lowest available energy states, which occupy a sphere of radius k-, the
Fermi wavevector.

smky = (N/2)2n /L)’



3.2.5 The free-electron model

Table 3.3. Properties of the free-electron gas

Fermi wavevector k (37’n)'? 1.2 x 10" m~!
Fermi velocity U hkp/m, 1.4 x 10° ms™!
Fermi energy ep (hkp)?/2m, 9 x 107" J
Fermi temperature Tr er/kp 6.5 x 10* K
Density of states D, (eF) 3n/4er 5 x 10% m— J~!
Pauli susceptibility X p 3u0uzgn /2ep 1.1 x 107

Hall coefficient Ry, 1/ne 1.0 x 1071 m® C~!

Numerical values are for n = 6 x 10°® m~>. Density of states is for one spin.

ep = (W% /2m,)(3n*n)*>

The surface separating occupied and unoccupied states is the Fermi surface,
which in the free electron model is a sphere.



3.2.5 The free-electron model

The density of states m— J~!

Dy 1(e) = %dn/dg

Dy (e) = (1/4.?1'2)(2!}36/}?33)3/281/2

3N/4g, |m====mmmmeecccemcccccececaeeaeaa.

'”:ﬂ

Density of states,

3
Energy, &
the density of states at the Fermi level for our sample with n electrons per

unit volume can be written f
Dy y(ep) = 3n/4eF



3.2.5 The free-electron model

Provided the dimensions of the box are macroscopic, the electron states
are very closely spaced in energy, and the expression for the density of
states does not depend on L or on the shape of the box.

However, the energy structure and density of states are drastically
modifiedwhen the electron gas is confined in one or more directions on a
nanometre length scale. Generations of miniaturization have made electron
transport in such confined dimensions the focus of modern electronics.

Confinement leads to a coarse-grained
momentum and energy structure, which
follows from the de Broglie relation

€ (h’/8m %) 4




3.2.5 The free-electron model

A two-dimensional electron gas

. = 2m, | Y [
/ \\ 7k = (N/2)2m /L)Y
N A "/

X N =nlL?

The Fermi energy ep
(h?/2m,)2mn

Dy (er) = (1/47)2m, /1)
a quantum wire

h- Tn; \ 2 TH; \2
5= S+ () + ()
Sl 2m, [ T [ * [

DT1l(8F) — (”16/271-;})(1/2”%8!7)1/2




3.2.5 The free-electron model

Electrons moving in the lattice of a crystalline solid are subject to the
periodic potential of the nuclei screened by their tightly bound ion cores.
According to Bloch’s theorem, the electronic states

V(r) = exp(ik « r)ui(r)
up(r) = ui(r + R)

R = pay +qax +ra;

a general lattice vector defined as a
sum of the primitive lattice vectors

When the wavevector for an electron moving in some
direction in k-space satisfies the Bragg condition,

N
2k G = G-,
it will be reflected and a series of singularities will appear in the free-electron

dispersion relation, which can lead to sharp structure and even gaps in the
density of states.



3.2.5 The free-electron model

2k G = G?,

Here G is a lattice vector of the reciprocal lattice of the crystal in k-space,
whose lattice points are

G — f’t‘bl —|— ;ng —|— {bg
by = 2n(a; x az)/(a;.(a; X az))

T Ni (fcc) |
m

T
i Cu (fco) |

Density of states, Ny fe) (eV~"atom=')
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5 0 T 5
Energy, € (eV)



3.2.6 Pauli susceptibility

The effect of an applied magnetic field B acting on the spin moment is to

shift the two subbands by

3n/4e,

Density of states, 7, ilE?

TupB :
ﬁ [
s
2,8
) Density of states, D(g) ll_/
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Energy, € M :(”T _”i)uB

2D ((erp)uyB



3.2.6 Pauli susceptibility

The effect of an applied magnetic field B acting on the spin moment is to
shift the two subbands by

+zB M =" —nY)ug

| 2D+ ((erp)uyB
xp = MmoM/B

X p =21 Dr (eF).

Energy, ¢

tB Dy (ep)=3n/4eF
er = kplF
) 2u,B1 . | o)
Density of states, D(g) II_/ X L 3” Ju'[]lu' B
P — . .
2kpTF

The Pauli susceptibility is temperature-independent to first order. about two
orders of magnitude smaller than the Curie susceptibility at room temperature.



3.2.6 Pauli susceptibility

At finite temperature, the occupancy of the states given by D(¢) is
determined by the Fermi-Dirac distribution function:

: 1
(T el — ks T+

Energy, ¢

where u is the chemical potential.
AtT=0K, u =¢.

72 [T\’
to nw=cer|l ( ) + .-

12\ 7T
2u,B1
) Density of states, D(g) II_/
3n 2 3n o/ I 72 (T |
_ dnflyp Xp = VB |1 _ ( ) 4.
P ksTr 2kple | 12 \TF _




3.2.7 Electrical conduction

\Z

The Hall effect. -

QI_}’
0

The Fermi surface of
copper.

Oy < Band o, =0, + a B2,



3.2.7 Electrical conduction

We will now consider electrical conduction in the free electron model of a
metal, and how it is influenced by a magnetic field.

vy j=ok,

where o is the electrical conductivity in S m~".

K, E=oj.
where o = 1 /o 1s the resistivity in 2 m.
R = ol/a.
E=V/I,
I = ja,
V =1IR

Ohm’s law can be written in terms of the chemical potential, which is the
change of energy when one extra electron is added to the metal. In an electric
potential



3.2.7 Electrical conduction

Ohm’s law can be written in terms of the chemical potential, which is the
change of energy when one extra electron is added to the metal. In an
electric potential ¢,

4 ’ = o — €P,,

where ois the constant chemical potential in
the absence of an electric field.

X E=—Vg,=V(u/e),

-

j —

—— ag
5Kk, el
——— E €

V.

A constant gradient of chemical potential is therefore associated with a
flow of current in a conductor. The electrons are guided down the wire
by a gradient of charge density at the surface of the conductor.



3.2.7 Electrical conduction

The entire Fermi surface is very slightly shifted in the direction of E as the
electrons acquire a drift velocity vasin the field direction.

K J = —nevy

Mobility, defined as

p=uvq/E
Jj=o0oF,

x o = neju.

The conductivity of copper at room temperature

o=060x10°Q m
E n=2845x 10 m=>
= 4x10"m?>V-s!

- _"7
J=1Amm - | | | |
Electrons drift at the proverbial snail’s pace, but their
Vs = 007 mm s~ ! instantaneous Fermi velocity is an astonishing ten
orders of magnitude greater.

—_—



3.2.7 Electrical conduction

The conduction process involves electrons being accelerated by the force

—e E

in a direction opposite to the field for a time 7, on average, before they are
scattered across the Fermi surface into states where their velocity is randomized

Newton’s second law gives eET = Meyvy

5
ne-t

ag =
n,

The mean free path travelled by an electron in time 17 between collisions is
A= VFT
In our example of copper,

T=25x10"1"5

A = 40 nm.



3.2.7 Electrical conduction

The free-electron model is quite a good approximation for metals like copper
with a half-filled s-band and an almost-spherical Fermi surface. It can be
extended to other metals with nonparabolic densities of states by defining
an effective mass for the electrons as

m* =n*(0e/ok”); !
Hence, narrow bands have high effective mass and low mobility,

i =et/m*.

Generally, the conductivity or resistivity
in Ohm’s law (3.47) is a diagonal
tensor, which reduces to the familiar
scalar for cubic crystals or
polycrystalline

material.



3.2.7 Electrical conduction

Generally, the conductivity or resistivity in Ohm’s law (3.47) is a diagonal
tensor, which reduces to the familiar scalar for cubic crystals or polycrystalline
material.

jZUE,

When a magnetic field is applied in the z-direction, the diagonal components

Ovx —0y 0
O = Oxx+0yys O, A - -
1 XX S Y) <L 0= |0, O 0
of the resistivity may change. 0 0.,

Magnetoresistance

Ao/o =lo;(B) —0;(0)]/0;(0).

The resistance of a metal is inversely proportional to the mean free path.

The change of resistance in an applied magnetic field results from the
curtailing of the mean free path in the current direction when the electrons
complete a significant fraction of a cyclotron orbit before they are scattered.



3.2.7 Electrical conduction

Magnetoresistance effects associated with cyclotron motion can be
significant when

w.T 2 1

The effect is initially quadratic in B. Ap x B2

The magnetoresistance is small (=1% in 1 T) in metals where scattering is

strong, but it may be much larger in semimetals and semiconductors, where

the electron mobility is high. 160

—| Bi polycrystalline film (150 nm) 77 K
140 ;
i Perpendicular

120—

o5
o
|

Transverse

Magnetoresistance (%)
o)
o
'] I ']

| ) | ' | ' | T |
0 5 10 15 20 25
Magnetic field (T)



3.2.7 Electrical conduction

Furthermore, off-diagonal terms appear which are due to the Lorentz force.
This leads to the Hall effect. When an electric current j.of electrons moving
with drift velocity v in the negative x-direction flows in a conductor, and a
transverse magnetic field B.is applied, the electrons are deflected and

accumulate at the edge of the sample until the electric field Ey they create
Is just sufficient to balance the Lorentz force.

E, =v.B,
Jx = —nevy,
E, = —(1/ne)yx B::
the Hall coefficient
R, = —(1/ne)
Oxy = Rh B. The Hall effect.

The Hall effect is inversely proportional to electron density, so it is large when
n is small, as in semiconductors.



3.2.7 Electrical conduction

The form of the resistivity is determined by the Onsager principle, which
requires that the off-diagonal terms in a response function satisfy

0ii(B)=—0;i(B)=0;i(—B)



3.2.8 Landau diamagnetism

The free-electron model was used by Landau to calculate the susceptibility
due to orbital diamagnetism of the conduction electrons. The result is

w1 =—npopuy/2kpTr

which is exactly one third of the Pauli paramagnetism, but of opposite sign

Curie susceptibility, Y
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3.2.8 Landau diamagnetism

RIYTNTY
2 . oM p
= —nuotrn/2kpTF — :

the real band structure of solids is approximately taken into account, by
using the effective mass

| k2
XL = —3(m./m*)" yp
For some semiconductors, and semimetals such as graphite or bismuth,

m* =~ 0.01m,



3.4 Magnetism of electrons in solids

The free-electron model provides a fair account of the outermost electrons
In a metal or semiconductor.

A better understanding of the magnetism of electrons in solids is achieved
by considering first the situation for free atoms.

The electronic moments are completely paired for some of the elements
with even atomic number Z such as the alkaline earths or the noble gases,
but most elements retain a magnetic moment in the atomic state.

Electrons in filled shells have paired spins and no net orbital moment.
Only unpaired spins in unfilled shells, usually the outermost one, contribute
to the atomic moment.



?He

The Magnetic Periodic Table b
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3.2.8 Landau diamagnetism

Assembling the atoms together to form a solid is a traumatic process for the
atomic moments. Magnetism tends to be destroyed by chemical
interactions of the outermost electrons, which can occur in various ways.

- Electron transfer to form filled shells in ionic compounds;
- covalent bond formation in semiconductors;
- band formation in metals.
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