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Goal of this class



Goal of this chapter

The magnetic moments in solids are associated with electrons. 
The microscopic theory of magnetism is based on the quantum mechanics of 
electronic angular momentum, which has two distinct sources – orbital motion 
and spin. 

They are coupled by the spin–orbit interaction.

Free electrons follow cyclotron orbits in a magnetic field, whereas 
bound electrons undergo Larmor precession, which gives rise to orbital 
diamagnetism. 

The description of magnetism in solids is fundamentally different depending on 
whether the electrons are localized on ion cores, or delocalized in energy 
bands.

A starting point for discussion of magnetism in metals is the free-electron 
model, which leads to temperature-independent Pauli paramagnetism and 
Landau diamagnetism. 
By contrast, localized noninteracting electrons exhibit Curie paramagnetism.



Basics on electrons

This de Broglie relation, combined with Niels Bohr’s postulate that the 
angular momentum of electrons in atomswas quantized in multiples of

led to the idea that the allowed orbits of electrons in atoms were 
stationary states with an integral number of de Broglie wavelengths. 
This opened the door to the development of quantum physics.

Two basic approaches are wave mechanics, due to Schr¨odinger,
and matrix mechanics, due to Heisenberg.



eigenstates
eigenvalues

The eigenfunctions are orthogonal and form a basis of the system

The Heisenberg formulation which is especially useful in magnetism 
when only a small number of eigenstates are relevant, uses an n × n 
matrix representation for the Hamiltonian.

All physical observables can be represented by matrix operators. The 
eigenstates are n × 1 column vectors, and the eigenvalues are real 
numbers. The procedure to determine them often involves diagonalizing
a matrix to find its eigenvalues. 
Corrections due to small additional terms in the Hamiltonian are 
deduced from perturbation theory.

Basics on electrons



3.1 Orbital and spin moments

Magnetism is intimately connected with angular momentum of 
elementary particles, so the quantum theory of magnetism is closely linked 
to the quantization of angular momentum.

Protons, neutrons and electrons possess an intrinsic angular momentum

Nuclear spin creates much smaller magnetic moments than electronic spin
because of the much greater nucleon mass. 
Electrons are the main source of magnetic moments in solids.



3.1 Orbital and spin moments



3.1.1 Orbital moment

The orbital moment can be introduced in terms of the 
Bohr model of the atom, where electrons revolve 
around a nucleus of charge Ze in circular orbits
under the influence of the Coulomb potential

angular momentum

the proportionality factor γ is known as the gyromagnetic ratio.



3.1.1 Orbital moment
The orbital angular momentum is quantized in units of ħ, in such a way 
that the component of m in some particular direction, chosen as the z-
direction, is

The natural unit for electronic magnetism is therefore the Bohr magneton, 
defined as

The remarkable difference between an electron in a quantum-mechanical
stationary state and a classical charged particle is that the former can 
circulate indefinitely in its orbit as some sort of perpetual motion or electronic 
supercurrent – whereas the classical particle, or an electron in an 
unquantized orbit, must radiate energy on account of its continuous 
centripetal acceleration. Classical orbital motion will soon cease as a result 
of radiation loss.



3.1.1 Orbital moment
g-factor

the ratio of the magnitude of the magnetic moment in units of μB
to the magnitude of the angular momentum in units of ħ:

Hence g is exactly 1 for orbital motion.

The Bohr model, a simplified version of the quantum mechanics of the
atom, provides us with the natural units of length and energy for atomic
physics.

the Bohr radius



3.1.2 Spin moment
The electron possesses intrinsic spin angular momentum with quantum number

There is an associated intrinsic magnetic moment, unrelated to any orbital 
motion, which can only adopt one of two discreet orientations relative to
a magnetic field.

the image of a spinning ball
of charge is ultimately misleading

The mysterious built-in angular momentum emerges as a consequence of 
relativistic quantum mechanics



3.1.2 Spin moment
All fermions have spin and an associated magnetic moment. 
It turns out that the magnetic moment associated with the electron spin is 
not a half, but almost exactly one Bohr magneton.

The spin magnetic quantum number is

so there are only the two possible angular momentum states. 
The component of spin along any axis is



3.1.2 Spin moment
The reality of the link between magnetism and angular 
momentum, known as the Einstein–de Haas effect, was 
demonstrated in an experiment carried out by John 
Stewart in 1917. 

the magnitude of the ferromagnetic 
moment is only 2.2μB per atom.

the ferromagnetic moment of iron corresponds to the 
spin moment of barely two of them. 
All the others form pairs with oppositely aligned spins, 
and contribute nothing.



3.1.3 Spin-orbit coupling
Generally, an atomic electron possesses both spin and orbital angular 
momentum.
They may be coupled by spin–orbit interaction to create a total 
electronic angular momentum j , with resultant magnetic moment

The electron’s magnetic moments associated with l and s are oppositely 
aligned.



The Z variation means that the spin–orbit interaction, while weak for light
elements becomes much more important for heavy elements and 
especially for inner shells. 
The associated magnetic field is of order 10 T

3.1.3 Spin-orbit coupling

The correct version of the spin–orbit interaction, resulting from a
relativistic calculation, is given in §3.3.3. 
The expression (3.12) is modified by a factor 2

the spin–orbit Hamiltonian



3.1.4 Quantum mechanics of angular momentum

The Bohr model is an oversimplification of the quantum theory of angular
momentum. In quantum mechanics, physical observables are represented 
by differential operators or matrix operators, which we denote by bold 
symbols with a hat.

The allowed values of a physical observable

the possible observable states of the system.



The angular momentum operator

3.1.4 Quantum mechanics of angular momentum



An alternative way of representing angular momentum operators, which
is invaluable when considering the spin of electrons, is with matrices.

Square hermitian matrices

The magnetic systems have a small number ν of magnetic basis 
states, each denoted by a different magnetic quantum number mi , 
and they can be represented by ν × ν square hermitian matrices.

For orbital angular momentum with quantum number l,

Similarly for spin, the electron with

2× 2 spin operator

3.1.4 Quantum mechanics of angular momentum



2× 2 spin operator

The eigenvalues

The eigenvectors

The arrow indicates the direction of the magnetic moment. 
The negative charge of the electron means (somewhat confusingly) that 
↑ is spin down and vice versa.

‘spin-up’

‘spin-down’

3.1.4 Quantum mechanics of angular momentum



3.1.4 Quantum mechanics of angular momentum

The Pauli spin matrices: The eigenvalues

The eigenvectors

spinors.



3.1.4 Quantum mechanics of angular momentum

The fundamental property of angular momentum in quantum mechanics is
that the operators representing the x, y, and z components satisfy the 
commutation rules

These operators have to be Hermitian so that their eigenvalues are real. 
A neat way of summarizing the commutation relations is



3.1.4 Quantum mechanics of angular momentum

The differential operators for orbital angular momentum, (3.15), also obey
these commutation rules, as all angular momentum operators must. 
Two operators are said to commute if their commutator is zero.

In quantum mechanics, only those physical quantities whose operators
commute can be measured simultaneously. 
The three components of angular momentum do not commute and 
therefore cannot be measured at the same time. 
A precise measurement of the z component, for example, means that the
x and y components are indeterminate. 
However, it is possible to measure the total angular momentum and any one 
of its components (but conventionally the z component) simultaneously.

The square of the total spin angular momentum,



3.1.4 Quantum mechanics of angular momentum

The eigenvalue of the square of the total angular momentum





3.1.4 Quantum mechanics of angular momentum

The two states with
have opposite magnetic 
moments and a Zeeman 
splitting of the two energy levels 
develops in a magnetic field B.



3.1.4 Quantum mechanics of angular momentum

The magnetic moment operator of the electron  (  in units of Bohr magnetons)
is proportional to the associated angular momentum (in units of ħ ) and can
be represented by a similar matrix, with the proportionality factor (g-factor) of
1 for orbital and 2 for spin moments. 

The total magnetic moment of an electron is generally a
vector sum of the spin and orbital magnetic moments:

The Zeeman interaction of these moments with an applied field B



The Stern–Gerlach experiment



3.2 Magnetic field effects

The effects of a magnetic field on an electron are to modify its linear or 
angular motion, and to induce some magnetization in the direction of 
the field, as a result of Boltzmann population of the energy levels 
obtained from (3.21). 

In this section, we discuss the effects of a magnetic field on the electron 
motion semiclassically.



3.2.1 Cyclotron orbits

The Lorentz force

Newton’s second law

the cyclotron frequency



The magnetron in a domestic microwave oven uses 
ferrite magnets producing a field ≈0.09 T.
The cyclotron frequency (3.26) of an electron in a 
field B is 28 GHz T−1, so the frequency of radiation of 
an electron in this field is 2.45 GHz, corresponding
to a wavelength λ ≈ 8 cm which is readily absorbed 
by water. Water absorbs microwaves over a broad 
range of frequency but the 2.45 GHz band is 
reserved
for cooking.

A domestic microwave magnetron. Electrons from
the cathode are accelerated towards the anode in 
a transverse magnetic field of 90 mT produced by 
ferrite ring magnets. Currents circulating in the 
copper tines create the microwave radiation which 
is led to the cavity via an antenna.

3.2.1 Cyclotron orbits



2.1 Electromagnetic Waves



3.2.2 Larmor precession

If an electron is constrained somehow to move in an 
orbit, it has an associated magnetic moment

The effect of the magnetic field is to exert a torque

When B is along the z-axis, the vector product in Cartesian coordinates gives



3.2.2 Larmor precession

The magnetic momentmtherefore precesses
around the applied field direction at the Larmor
frequency

The precession continues indefinitely if there is no way for the 
system to dissipate energy, and the angular momentum 
remains constant. 
Note that the Larmor precession frequency for an orbital 
moment is just half the cyclotron frequency,

whereas it is equal to the cyclotron frequency for a spin moment



3.2.3 Orbital diamagnetism
There is some angular momentum, and therefore a magnetic moment is 
associated with the precession of the electron orbit induced by the 
magnetic field. 

By Lenz’s law,
the induced moment is expected to oppose the applied field.

the mean square radius of the 
electron’s orbit projected onto 
the plane perpendicular to B.

The induced angular momentum

a susceptibility



In atoms, the effect is dominated by the outer electron shells, which have 
the largest orbital radii.
Negative ions therefore tend to have the largest diamagnetic susceptibility

The order of magnitude of the orbital diamagnetic susceptibility χ for an
element with

mass susceptibility χm = χ/d,

3.2.3 Orbital diamagnetism



Orbital diamagnetism is a small effect, present to some extent
for every element and molecule. 

It is the dominant susceptibility when there are no partially filled shells, 
which produce a larger paramagnetic contribution due to unpaired 
electron spins. 

Relatively large diamagnetic susceptibilities are observed for aromatic 
organic materials.

3.2.3 Orbital diamagnetism





the Bohr–van Leeuwen theorem

Unfortunately, there is an underlying problem with classical calculations of
the response of electrons to magnetic fields. Since the magnetic force f =
−e(v × B) is perpendicular to the electron velocity, the magnetic field 
does no work on a moving electron, and cannot modify its energy. 

Hence δw´is zero in (2.92), and it follows that there can be no change of 
magnetization. 
The idea was set out in the Bohr–van Leeuwen theorem, a famous and 
disconcerting result of classical statistical mechanics which states that 

at any finite temperature and in all finite electric or magnetic fields, the 
net magnetization of a collection of electrons in thermal equilibrium 
vanishes identically.

Every sort of magnetism is impossible for electrons in classical physics! 

The semiclassical calculation of the orbital diamagnetism works only 
because we have assumed that there is a fixed magnetic moment 
associated with the orbit.



The diamagnetic susceptibility of more than half the elements in the 
periodic table is overwhelmed by a positive paramagnetic contribution.



We now grant the electron its intrinsic spin moment, and examine how 
paramagnetic susceptibility arises in the two extreme models of 
magnetism, those of localized and delocalized electrons.

3.2.4 Curie-law paramagnetism (localized e)

The Curie law is

The Curie constant



The Boltzmann populations of the two energy levels which are proportional 
to

electrons per unit volume

the induced magnetization along Oz

3.2.4 Curie-law paramagnetism (localized e)



The average z-component of the moment per atom

At room temperature

3.2.4 Curie-law paramagnetism (localized e)



3.2.5 The free-electron model



3.2.5 The free-electron model

In order to calculate the susceptibility in the opposite, delocalized, limit we
introduce the simplest possible delocalized-electron model for a solid. 
The electrons are described as noninteracting waves confined in a box of 
dimension L. 
The Hamiltonian is the sum of terms representing the kinetic and potential
energy:



3.2.5 The free-electron model

The boundary conditions, which are periodic for 
free-electron waves, restrict the allowed values 
of k so that the components

Since indistinguishable electrons obey Fermi–Dirac 
statistics, each quantum state represented by the 
integers nx, ny, nz can accommodate at most two 
electrons

Each state has two-fold spin degeneracy.

At zero temperature the N = nL3 electrons in the box occupy all the 
lowest available energy states, which occupy a sphere of radius kF , the 
Fermi wavevector.



3.2.5 The free-electron model

The surface separating occupied and unoccupied states is the Fermi surface,
which in the free electron model is a sphere.



The density of states

3.2.5 The free-electron model

the density of states at the Fermi level for our sample with n electrons per 
unit volume can be written



3.2.5 The free-electron model

Provided the dimensions of the box are macroscopic, the electron states 
are very closely spaced in energy, and the expression for the density of 
states does not depend on L or on the shape of the box. 
However, the energy structure and density of states are drastically 
modifiedwhen the electron gas is confined in one or more directions on a 
nanometre length scale. Generations of miniaturization have made electron 
transport in such confined dimensions the focus of modern electronics.

Confinement leads to a coarse-grained 
momentum and energy structure, which 
follows from the de Broglie relation



3.2.5 The free-electron model

A two-dimensional electron gas

a quantum wire



3.2.5 The free-electron model

Electrons moving in the lattice of a crystalline solid are subject to the 
periodic potential of the nuclei screened by their tightly bound ion cores. 
According to Bloch’s theorem, the electronic states

a general lattice vector defined as a 
sum of the primitive lattice vectors

When the wavevector for an electron moving in some
direction in k-space satisfies the Bragg condition,

it will be reflected and a series of singularities will appear in the free-electron
dispersion relation, which can lead to sharp structure and even gaps in the
density of states.



Here G is a lattice vector of the reciprocal lattice of the crystal in k-space, 
whose lattice points are

3.2.5 The free-electron model



3.2.6 Pauli susceptibility

The effect of an applied magnetic field B acting on the spin moment is to 
shift the two subbands by



3.2.6 Pauli susceptibility

The effect of an applied magnetic field B acting on the spin moment is to 
shift the two subbands by

The Pauli susceptibility is temperature-independent to first order. about two 
orders of magnitude smaller than the Curie susceptibility at room temperature.



3.2.6 Pauli susceptibility

At finite temperature, the occupancy of the states given by D(ε) is 
determined by the Fermi–Dirac distribution function:

where μ is the chemical potential. 
At T = 0 K, μ = εF .



3.2.7 Electrical conduction



3.2.7 Electrical conduction

We will now consider electrical conduction in the free electron model of a
metal, and how it is influenced by a magnetic field.

Ohm’s law can be written in terms of the chemical potential, which is the
change of energy when one extra electron is added to the metal. In an electric
potential



3.2.7 Electrical conduction

Ohm’s law can be written in terms of the chemical potential, which is the
change of energy when one extra electron is added to the metal. In an 
electric potential

where μ0 is the constant chemical potential in 
the absence of an electric field.

A constant gradient of chemical potential is therefore associated with a 
flow of current in a conductor. The electrons are guided down the wire 
by a gradient of charge density at the surface of the conductor.



3.2.7 Electrical conduction

The entire Fermi surface is very slightly shifted in the direction of E as the
electrons acquire a drift velocity vd in the field direction.

Mobility, defined as

The conductivity of copper at room temperature

Electrons drift at the proverbial snail’s pace, but their
instantaneous Fermi velocity is an astonishing ten 
orders of magnitude greater.



3.2.7 Electrical conduction

The conduction process involves electrons being accelerated by the force

in a direction opposite to the field for a time τ , on average, before they are
scattered across the Fermi surface into states where their velocity is randomized.

Newton’s second law gives

The mean free path travelled by an electron in time τ between collisions is

In our example of copper,



3.2.7 Electrical conduction

The free-electron model is quite a good approximation for metals like copper
with a half-filled s-band and an almost-spherical Fermi surface. It can be
extended to other metals with nonparabolic densities of states by defining 
an effective mass for the electrons as

Hence, narrow bands have high effective mass and low mobility,

Generally, the conductivity or resistivity 
in Ohm’s law (3.47) is a diagonal
tensor, which reduces to the familiar 
scalar for cubic crystals or 
polycrystalline
material.



3.2.7 Electrical conduction

Generally, the conductivity or resistivity in Ohm’s law (3.47) is a diagonal
tensor, which reduces to the familiar scalar for cubic crystals or polycrystalline
material.

When a magnetic field is applied in the z-direction, the diagonal components

of the resistivity may change.

Magnetoresistance

The resistance of a metal is inversely proportional to the mean free path.

The change of resistance in an applied magnetic field results from the 
curtailing of the mean free path in the current direction when the electrons 
complete a significant fraction of a cyclotron orbit before they are scattered.



3.2.7 Electrical conduction

Magnetoresistance effects associated with cyclotron motion can be 
significant when

The effect is initially quadratic in B.

The magnetoresistance is small (≈1% in 1 T) in metals where scattering is
strong, but it may be much larger in semimetals and semiconductors, where 
the electron mobility is high.



Furthermore, off-diagonal terms appear which are due to the Lorentz force.
This leads to the Hall effect. When an electric current jx of electrons moving 
with drift velocity v in the negative x-direction flows in a conductor, and a 
transverse magnetic field Bz is applied, the electrons are deflected and 
accumulate at the edge of the sample until the electric field Ey they create 
is just sufficient to balance the Lorentz force.

3.2.7 Electrical conduction

the Hall coefficient

The Hall effect is inversely proportional to electron density, so it is large when 
n is small, as in semiconductors.



3.2.7 Electrical conduction

The form of the resistivity is determined by the Onsager principle, which 
requires that the off-diagonal terms in a response function satisfy



3.2.8 Landau diamagnetism

The free-electron model was used by Landau to calculate the susceptibility 
due to orbital diamagnetism of the conduction electrons. The result is

which is exactly one third of the Pauli paramagnetism, but of opposite sign



3.2.8 Landau diamagnetism

the real band structure of solids is approximately taken into account, by 
using the effective mass

For some semiconductors, and semimetals such as graphite or bismuth,



3.4 Magnetism of electrons in solids

The free-electron model provides a fair account of the outermost electrons
in a metal or semiconductor. 
A better understanding of the magnetism of electrons in solids is achieved 
by considering first the situation for free atoms. 

The electronic moments are completely paired for some of the elements 
with even atomic number Z such as the alkaline earths or the noble gases, 
but most elements retain a magnetic moment in the atomic state.

Electrons in filled shells have paired spins and no net orbital moment. 
Only unpaired spins in unfilled shells, usually the outermost one, contribute 
to the atomic moment.





3.2.8 Landau diamagnetism

Assembling the atoms together to form a solid is a traumatic process for the
atomic moments. Magnetism tends to be destroyed by chemical 
interactions of the outermost electrons, which can occur in various ways:

- Electron transfer to form filled shells in ionic compounds;
- covalent bond formation in semiconductors;
- band formation in metals.
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