Fitting a Step Function to a Point Set

Hervé Fournier¹ Antoine Vigneron²

¹University of Versailles St-Quentin en Yvelines

²INRA Jouy-en-Josas

December 4, 2008

- Problem statement
- Our results
- Previous work

Optimization algorithm

Searching in a sorted matrix

4 Linear time algorithm

- Path partitioning
- General framework
- Linear-time algorithm for fitting a step function
- Weighted version
- Frederickson's algorithm (sketch)

Conclusion

• INPUT: a set P of n points and an integer k.

___ ▶

- INPUT: a set P of n points and an integer k.
- OUTPUT: a step function f^* with k steps that minimizes the maximum vertical distance $\varepsilon^* = d(P, f^*)$ between f and P.

•
$$d(f, P) = \max_i |f(x_i) - y_i|$$
 when $P = \{(x_1, y_1) \dots (x_n, y_n)\}$

- INPUT: a set P of n points and an integer k.
- OUTPUT: a step function f^* with k steps that minimizes the maximum vertical distance $\varepsilon^* = d(P, f^*)$ between f and P.

•
$$d(f, P) = \max_i |f(x_i) - y_i|$$
 when $P = \{(x_1, y_1) \dots (x_n, y_n)\}$

- INPUT: a set *P* of *n* points and an integer *k*.
- OUTPUT: a step function f^* with k steps that minimizes the maximum vertical distance $\varepsilon^* = d(P, f^*)$ between f and P.

•
$$d(f, P) = \max_i |f(x_i) - y_i|$$
 when $P = \{(x_1, y_1) \dots (x_n, y_n)\}$

• An $O(n \log n)$ time algorithm.

3

< 🗇 🕨 🔸

- An $O(n \log n)$ time algorithm.
 - based on Frederickson and Johnson's sorted matrix searching technique.

- An $O(n \log n)$ time algorithm.
 - based on Frederickson and Johnson's sorted matrix searching technique.
- An O(n) time algorithm for sorted input.

- An $O(n \log n)$ time algorithm.
 - based on Frederickson and Johnson's sorted matrix searching technique.
- An O(n) time algorithm for sorted input.
 - based on Frederickson's path partitioning algorithm, and the data structure by Gabow, Bentley, and Tarjan for range maxima.

- An $O(n \log n)$ time algorithm.
 - based on Frederickson and Johnson's sorted matrix searching technique.
- An O(n) time algorithm for sorted input.
 - based on Frederickson's path partitioning algorithm, and the data structure by Gabow, Bentley, and Tarjan for range maxima.
- An $O(n \log^4 n)$ time algorithm for the weighted case.

- An $O(n \log n)$ time algorithm.
 - based on Frederickson and Johnson's sorted matrix searching technique.
- An O(n) time algorithm for sorted input.
 - based on Frederickson's path partitioning algorithm, and the data structure by Gabow, Bentley, and Tarjan for range maxima.
- An $O(n \log^4 n)$ time algorithm for the weighted case.
- An $O(n \log n \cdot h^2)$ time algorithm when h outliers are allowed.

• Diáz-Báñez and Mesa (2001): $O(n^2 \log n)$.

-

3

< 🗇 🕨 🔸

- Diáz-Báñez and Mesa (2001): $O(n^2 \log n)$.
- Wang (2002): $O(n^2)$.

3 x 3

< 🗇 🕨 <

- Diáz-Báñez and Mesa (2001): $O(n^2 \log n)$.
- Wang (2002): $O(n^2)$.
- Mayster and Lopez (2006): $O(\min(n^2, nk \log n))$.

3

- Diáz-Báñez and Mesa (2001): $O(n^2 \log n)$.
- Wang (2002): $O(n^2)$.
- Mayster and Lopez (2006): $O(\min(n^2, nk \log n))$.
- Guha and Shim (2007): $O(n + k^2 \log n)$, and $O(n \log n + k^2 \log^6 n)$ for the weighted case.

- Diáz-Báñez and Mesa (2001): $O(n^2 \log n)$.
- Wang (2002): $O(n^2)$.
- Mayster and Lopez (2006): $O(\min(n^2, nk \log n))$.
- Guha and Shim (2007): $O(n + k^2 \log n)$, and $O(n \log n + k^2 \log^6 n)$ for the weighted case.
- Mayster and Lopez (2008): $O(n^2)$ for the weighted case.

- Diáz-Báñez and Mesa (2001): $O(n^2 \log n)$.
- Wang (2002): $O(n^2)$.
- Mayster and Lopez (2006): $O(\min(n^2, nk \log n))$.
- Guha and Shim (2007): $O(n + k^2 \log n)$, and $O(n \log n + k^2 \log^6 n)$ for the weighted case.
- Mayster and Lopez (2008): $O(n^2)$ for the weighted case.
- In databases, the problem is known as the problem of computing a *Maximum Error Histogram*.

Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

• FALSE if k = 3

- Decision problem: given P, k, ε > 0, is there a k-step function f such that d(P, f) ≤ ε?
- Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

FALSE if *k* = 3
TRUE if *k* = 4

• $\{y_1, \ldots, y_n\}$ denote the y-coordinates of points in P.

< A >

3

Image: A match a ma

э

- $\{y_1, \ldots, y_n\}$ denote the *y*-coordinates of points in *P*.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.

- $\{y_1, \ldots, y_n\}$ denote the *y*-coordinates of points in *P*.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.
- Simple algorithm:

3

- $\{y_1, \ldots, y_n\}$ denote the *y*-coordinates of points in *P*.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.
- Simple algorithm:
 - Sort the ε_{ij} 's: $O(n^2 \log n)$ time.

- $\{y_1, \ldots, y_n\}$ denote the y-coordinates of points in P.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.
- Simple algorithm:
 - Sort the ε_{ij} 's: $O(n^2 \log n)$ time.
 - Perform binary search using the decision algorithm: $O(n \log n)$.

- $\{y_1, \ldots, y_n\}$ denote the y-coordinates of points in P.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.
- Simple algorithm:
 - Sort the ε_{ij} 's: $O(n^2 \log n)$ time.
 - Perform binary search using the decision algorithm: $O(n \log n)$.
- Can be improved to $O(n \log n)$ using Frederickson and Johnson's sorted matrix searching technique.
Optimization algorithm

- $\{y_1, \ldots, y_n\}$ denote the *y*-coordinates of points in *P*.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.
- Simple algorithm:
 - Sort the ε_{ij} 's: $O(n^2 \log n)$ time.
 - Perform binary search using the decision algorithm: $O(n \log n)$.
- Can be improved to $O(n \log n)$ using Frederickson and Johnson's sorted matrix searching technique.
- Let $\tilde{y_1} \leq \ldots \leq \tilde{y_n}$ denote the *y*-coordinates in sorted order.

Optimization algorithm

- $\{y_1, \ldots, y_n\}$ denote the *y*-coordinates of points in *P*.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.
- Simple algorithm:
 - Sort the ε_{ij} 's: $O(n^2 \log n)$ time.
 - Perform binary search using the decision algorithm: $O(n \log n)$.
- Can be improved to $O(n \log n)$ using Frederickson and Johnson's sorted matrix searching technique.
- Let $\tilde{y_1} \leq \ldots \leq \tilde{y_n}$ denote the *y*-coordinates in sorted order.

• Let
$$M_{ij} = \frac{1}{2} (\tilde{y}_i - \tilde{y}_{n+1-j}).$$

Optimization algorithm

- $\{y_1, \ldots, y_n\}$ denote the *y*-coordinates of points in *P*.
- Let $\varepsilon_{ij} = \frac{1}{2}(y_i y_j)$.
- Then $\varepsilon^* = \varepsilon_{ij}$ for some i, j.
- Simple algorithm:
 - Sort the ε_{ij} 's: $O(n^2 \log n)$ time.
 - Perform binary search using the decision algorithm: $O(n \log n)$.
- Can be improved to $O(n \log n)$ using Frederickson and Johnson's sorted matrix searching technique.
- Let $\tilde{y_1} \leq \ldots \leq \tilde{y_n}$ denote the *y*-coordinates in sorted order.

• Let
$$M_{ij} = \frac{1}{2} (\tilde{y}_i - \tilde{y}_{n+1-j}).$$

• *M* is a sorted matrix: $i \leq i'$ and $j \leq j'$ implies $M_{ij} \leq M_{i'j'}$.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

• a sorted matrix M

47 ▶

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

• a sorted matrix M

 an increasing boolean function g: there exists x* such that g(x) = FALSE for all x < x*, and g(x) = TRUE for all x ≥ x*.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

- a sorted matrix M
- an increasing boolean function g: there exists x* such that g(x) = FALSE for all x < x*, and g(x) = TRUE for all x ≥ x*.
- Problem: search for x^* in M.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

• smallest elements in submatrices: $\{1, 5, 6, 12\}$; median=6.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

- smallest elements in submatrices: $\{1, 5, 6, 12\}$; median=6.
- largest elements in submatrices: {9, 15, 16, 23}; median=16.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

- smallest elements in submatrices: $\{1, 5, 6, 12\}$; median=6.
- largest elements in submatrices: {9, 15, 16, 23}; median=16.
- we compute g(6) = FALSE and g(16) = TRUE.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

- smallest elements in submatrices: $\{1, 5, 6, 12\}$; median=6.
- largest elements in submatrices: {9, 15, 16, 23}; median=16.
- we compute g(6) = FALSE and g(16) = TRUE.
- we did not make progress.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

• smallest elements: $\{1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19\}$; median=8.

- 32

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

- smallest elements: $\{1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19\}$; median=8.
- largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23}; median=12.

イロト イポト イヨト イヨト 二日

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

- smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.
- largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23}; median=12.
- we compute g(8) = FALSE and g(12) = TRUE.

1	2	3	4	5	6	7	8
2	3	5	6	7	8	9	10
3	6	7	8	10	11	12	13
4	7	8	9	11	12	13	15
6	9	10	11	12	14	15	17
7	10	11	13	14	16	17	18
8	12	13	14	15	18	19	20
9	13	14	16	17	19	21	23

- smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.
- largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23}; median=12.
- we compute g(8) = FALSE and g(12) = TRUE.
- we can discard 8 submatrices.

						7	8
						9	10
		7	8	10	11	12	13
		8	9	11	12	13	15
6	9	10	11	12	14		
7	10	11	13	14	16		
8	12						
9	13						

- smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.
- largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23}; median=12.
- we compute g(8) = FALSE and g(12) = TRUE.
- we can discard 8 submatrices.

						7	8
						9	10
		7	8	10	11	12	13
		8	9	11	12	13	15
6	9	10	11	12	14		
7	10	11	13	14	16		
8	12						
9	13						

• remaining elements $\{7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$; median=12.

						7	8
						9	10
		7	8	10	11	12	13
		8	9	11	12	13	15
6	9	10	11	12	14		
7	10	11	13	14	16		
8	12						
9	13						

remaining elements {7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; median=12.
we compute g(12) = TRUE

- 3

						7	8
						9	10
		7	8	10	11	12	13
		8	9	11	12	13	15
6	9	10	11	12	14		
7	10	11	13	14	16		
8	12						
9	13						

- remaining elements $\{7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$; median=12.
- we compute g(12) = TRUE
- we discard all elements > 12.

- 32

						7	8
						9	10
		7	8	10	11	12	
		8	9	11	12		
6	9	10	11	12			
7	10	11					
8	12						
9							

• repeat until one value is left.

						7	8
						9	10
		7	8	10	11	12	
		8	9	11	12		
6	9	10	11	12			
7	10	11					
8	12						
9							

- repeat until one value is left.
- $O(\log n)$ calls to the decision algorithm

						7	8
						9	10
		7	8	10	11	12	
		8	9	11	12		
6	9	10	11	12			
7	10	11					
8	12						
9							

- repeat until one value is left.
- $O(\log n)$ calls to the decision algorithm
- $O(n \log n)$ time for the rest of the algorithm, assuming each matrix element can be accessed in O(1) time.

- repeat until one value is left.
- $O(\log n)$ calls to the decision algorithm
- $O(n \log n)$ time for the rest of the algorithm, assuming each matrix element can be accessed in O(1) time.
- Therefore, we can compute an optimal step function in $O(n \log n)$ time.

• INPUT: a path P with n weighted nodes, and an integer k

- INPUT: a path P with n weighted nodes, and an integer k
- OUTPUT: a partition of *P* into *k* subpaths that minimizes the maximum weight of the subpaths.

- INPUT: a path P with n weighted nodes, and an integer k
- OUTPUT: a partition of *P* into *k* subpaths that minimizes the maximum weight of the subpaths.
- Example: weights $\{3, 1, 4, 3, 2, 4, 1\}$, k = 3.

- INPUT: a path P with n weighted nodes, and an integer k
- OUTPUT: a partition of *P* into *k* subpaths that minimizes the maximum weight of the subpaths.
- Example: weights $\{3, 1, 4, 3, 2, 4, 1\}$, k = 3.
- Answer: $\{3,1\}$, $\{4,3\}$, $\{2,4,1\}$. Max weight=7.

- INPUT: a path P with n weighted nodes, and an integer k
- OUTPUT: a partition of *P* into *k* subpaths that minimizes the maximum weight of the subpaths.
- Example: weights $\{3, 1, 4, 3, 2, 4, 1\}$, k = 3.
- Answer: $\{3,1\}$, $\{4,3\}$, $\{2,4,1\}$. Max weight=7.
- The path partitioning problem can be solved in $O(n \log n)$ time by sorted matrix searching.

- INPUT: a path P with n weighted nodes, and an integer k
- OUTPUT: a partition of *P* into *k* subpaths that minimizes the maximum weight of the subpaths.
- Example: weights $\{3, 1, 4, 3, 2, 4, 1\}$, k = 3.
- Answer: $\{3,1\}$, $\{4,3\}$, $\{2,4,1\}$. Max weight=7.
- The path partitioning problem can be solved in $O(n \log n)$ time by sorted matrix searching.
- Frederickson found an optimal O(n) time algorithm for path partitioning.

- INPUT: a path P with n weighted nodes, and an integer k
- OUTPUT: a partition of *P* into *k* subpaths that minimizes the maximum weight of the subpaths.
- Example: weights $\{3, 1, 4, 3, 2, 4, 1\}$, k = 3.
- Answer: $\{3,1\}$, $\{4,3\}$, $\{2,4,1\}$. Max weight=7.
- The path partitioning problem can be solved in $O(n \log n)$ time by sorted matrix searching.
- Frederickson found an optimal O(n) time algorithm for path partitioning.
- This algorithm works in the following, more general case:

• Σ an alphabet (e.g. $\Sigma = \{a, b\}$ or $\Sigma = \mathbb{R}$)

3

- Σ an alphabet (e.g. $\Sigma = \{a, b\}$ or $\Sigma = \mathbb{R}$)
- θ : $\Sigma^* \to \mathbb{R}^+$ with $\theta(e) = 0$

3

- Σ an alphabet (e.g. $\Sigma = \{a, b\}$ or $\Sigma = \mathbb{R}$)
- θ : $\Sigma^* \to \mathbb{R}^+$ with $\theta(e) = 0$
- MIN-MAX PARTITION(θ) problem:

- Σ an alphabet (e.g. $\Sigma = \{a, b\}$ or $\Sigma = \mathbb{R}$)
- θ : $\Sigma^* \to \mathbb{R}^+$ with $\theta(e) = 0$
- MIN-MAX PARTITION(θ) problem:
 - Given w ∈ Σ* and k > 0, compute a factorization w = w₁w₂...w_k minimizing

$$\max_{i\in\{1,\ldots,k\}}\theta(w_i)$$

- Σ an alphabet (e.g. $\Sigma = \{a, b\}$ or $\Sigma = \mathbb{R}$)
- θ : $\Sigma^* \to \mathbb{R}^+$ with $\theta(e) = 0$
- MIN-MAX PARTITION(θ) problem:
 - Given w ∈ Σ* and k > 0, compute a factorization w = w₁w₂...w_k minimizing

 $\max_{i\in\{1,\ldots,k\}}\theta(w_i)$

• Frederickson's problem is obtained with:

- Σ an alphabet (e.g. $\Sigma = \{a, b\}$ or $\Sigma = \mathbb{R}$)
- θ : $\Sigma^* \to \mathbb{R}^+$ with $\theta(e) = 0$
- MIN-MAX PARTITION(θ) problem:
 - Given w ∈ Σ* and k > 0, compute a factorization w = w₁w₂...w_k minimizing

 $\max_{i\in\{1,\ldots,k\}}\theta(w_i)$

• Frederickson's problem is obtained with:

•
$$\Sigma = \mathbb{R}^+$$

- Σ an alphabet (e.g. $\Sigma = \{a, b\}$ or $\Sigma = \mathbb{R}$)
- θ : $\Sigma^* \to \mathbb{R}^+$ with $\theta(e) = 0$
- MIN-MAX PARTITION(θ) problem:
 - Given w ∈ Σ* and k > 0, compute a factorization w = w₁w₂...w_k minimizing

$$\max_{i\in\{1,\ldots,k\}}\theta(w_i)$$

• Frederickson's problem is obtained with:

•
$$\Sigma = \mathbb{R}^+$$

$$\bullet \ \theta(a_1 \ldots a_p) = a_1 + \ldots + a_p$$
• Let Σ be an alphabet, and $\theta : \Sigma^* \to \mathbb{R}^+$ be a mapping such that $\theta(e) = 0$. Suppose that θ has the following properties:

• Let Σ be an alphabet, and $\theta : \Sigma^* \to \mathbb{R}^+$ be a mapping such that $\theta(e) = 0$. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, $\theta(v) \leq \theta(uvw)$ for all $u, v, w \in \Sigma^*$.

- Let Σ be an alphabet, and $\theta : \Sigma^* \to \mathbb{R}^+$ be a mapping such that $\theta(e) = 0$. Suppose that θ has the following properties:
 - (i) θ is non-decreasing, that is, $\theta(v) \leq \theta(uvw)$ for all $u, v, w \in \Sigma^*$.
 - (ii) We can preprocess $a_1 \ldots a_n \in \Sigma^n$ in time $\pi(n)$ so that, given any query (i, j), we can compute $\theta(a_i \ldots a_i)$ in time $\kappa(n)$.

- Let Σ be an alphabet, and θ : Σ* → ℝ⁺ be a mapping such that θ(e) = 0. Suppose that θ has the following properties:
 (i) θ is non-decreasing, that is, θ(v) ≤ θ(uvw) for all u, v, w ∈ Σ*.
 (ii) We can preprocess a₁...a_n ∈ Σⁿ in time π(n) so that, given any query (i, j), we can compute θ(a_i...a_i) in time κ(n).
- Then MIN-MAX PARTITION(θ) can be solved in time $O(\pi(n) + n\kappa(n))$.

- Let Σ be an alphabet, and θ : Σ* → ℝ⁺ be a mapping such that θ(e) = 0. Suppose that θ has the following properties:
 (i) θ is non-decreasing, that is, θ(v) ≤ θ(uvw) for all u, v, w ∈ Σ*.
 - (ii) We can preprocess $a_1 \ldots a_n \in \Sigma^n$ in time $\pi(n)$ so that, given any query (i, j), we can compute $\theta(a_i \ldots a_j)$ in time $\kappa(n)$.
- Then MIN-MAX PARTITION(θ) can be solved in time $O(\pi(n) + n\kappa(n))$.
- Example: path partitioning.

- Let Σ be an alphabet, and $\theta : \Sigma^* \to \mathbb{R}^+$ be a mapping such that $\theta(e) = 0$. Suppose that θ has the following properties:
 - (i) θ is non-decreasing, that is, $\theta(v) \leq \theta(uvw)$ for all $u, v, w \in \Sigma^*$.
 - (ii) We can preprocess $a_1 \ldots a_n \in \Sigma^n$ in time $\pi(n)$ so that, given any query (i, j), we can compute $\theta(a_i \ldots a_j)$ in time $\kappa(n)$.
- Then MIN-MAX PARTITION(θ) can be solved in time $O(\pi(n) + n\kappa(n))$.
- Example: path partitioning.
 - Preprocessing: compute $S_i = \sum_{\ell=1}^i \omega_\ell$ for all *i*.

- Let Σ be an alphabet, and $\theta : \Sigma^* \to \mathbb{R}^+$ be a mapping such that $\theta(e) = 0$. Suppose that θ has the following properties:
 - (i) θ is non-decreasing, that is, $\theta(v) \leq \theta(uvw)$ for all $u, v, w \in \Sigma^*$.
 - (ii) We can preprocess $a_1 \ldots a_n \in \Sigma^n$ in time $\pi(n)$ so that, given any query (i, j), we can compute $\theta(a_i \ldots a_j)$ in time $\kappa(n)$.
- Then MIN-MAX PARTITION(θ) can be solved in time $O(\pi(n) + n\kappa(n))$.
- Example: path partitioning.
 - Preprocessing: compute $S_i = \sum_{\ell=1}^i \omega_\ell$ for all *i*.
 - Query: $(i,j) \mapsto \theta(\omega_i,\ldots,\omega_j) = \sum_{\ell=i}^j \omega_\ell = S_j S_{i-1}.$

- Let Σ be an alphabet, and $\theta : \Sigma^* \to \mathbb{R}^+$ be a mapping such that $\theta(e) = 0$. Suppose that θ has the following properties:
 - (i) θ is non-decreasing, that is, $\theta(v) \leq \theta(uvw)$ for all $u, v, w \in \Sigma^*$.
 - (ii) We can preprocess $a_1 \ldots a_n \in \Sigma^n$ in time $\pi(n)$ so that, given any query (i, j), we can compute $\theta(a_i \ldots a_j)$ in time $\kappa(n)$.
- Then MIN-MAX PARTITION(θ) can be solved in time $O(\pi(n) + n\kappa(n))$.
- Example: path partitioning.
 - Preprocessing: compute $S_i = \sum_{\ell=1}^i \omega_\ell$ for all *i*.
 - Query: $(i,j) \mapsto \theta(\omega_i, \ldots, \omega_j) = \sum_{\ell=i}^j \omega_\ell = S_j S_{i-1}$.
 - $\pi(n) = O(n)$ and $\kappa(n) = O(1)$, so running time O(n).

• Application of previous theorem with:

- Application of previous theorem with:
- $\Sigma = \mathbb{R}$

• Application of previous theorem with:

- $\Sigma = \mathbb{R}$
- $\theta(a_1 \dots a_p) = \frac{1}{2} (\max(a_1, \dots, a_p) \min(a_1, \dots, a_p))$

• Application of previous theorem with:

- $\Sigma = \mathbb{R}$
- $\theta(a_1 \dots a_p) = \frac{1}{2} (\max(a_1, \dots, a_p) \min(a_1, \dots, a_p))$
- Range maxima problem:

- Application of previous theorem with:
- $\Sigma = \mathbb{R}$
- $\theta(a_1 \dots a_p) = \frac{1}{2} (\max(a_1, \dots, a_p) \min(a_1, \dots, a_p))$
- Range maxima problem:
 - Preprocess a sequence of numbers (y₁,..., y_n) to allow efficient answer to query

$$(i,j)\mapsto \max(y_i,\ldots,y_j)$$

- Application of previous theorem with:
- $\Sigma = \mathbb{R}$
- $\theta(a_1 \dots a_p) = \frac{1}{2} (\max(a_1, \dots, a_p) \min(a_1, \dots, a_p))$
- Range maxima problem:
 - Preprocess a sequence of numbers (y₁,..., y_n) to allow efficient answer to query

$$(i,j) \mapsto \max(y_i,\ldots,y_j)$$

▶ Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time preprocessing.

- Application of previous theorem with:
- $\Sigma = \mathbb{R}$
- $\theta(a_1 \dots a_p) = \frac{1}{2} (\max(a_1, \dots, a_p) \min(a_1, \dots, a_p))$
- Range maxima problem:
 - Preprocess a sequence of numbers (y₁,..., y_n) to allow efficient answer to query

$$(i,j) \mapsto \max(y_i,\ldots,y_j)$$

- ▶ Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time preprocessing.
- Conclusion: the sorted case can be solved in O(n) time.

Given a set of points in the plane {(x₁, y₁), ..., (x_n, y_n)} with positive weights μ₁, ..., μ_n and an integer k > 0, compute a k-step function f such that

 $\max_{1 \leq i \leq n} \mu_i |f(x_i) - y_i|$

is minimized.

Given a set of points in the plane {(x₁, y₁), ..., (x_n, y_n)} with positive weights μ₁, ..., μ_n and an integer k > 0, compute a k-step function f such that

 $\max_{1 \leq i \leq n} \mu_i |f(x_i) - y_i|$

is minimized.

Given a set of points in the plane {(x₁, y₁), ..., (x_n, y_n)} with positive weights μ₁, ..., μ_n and an integer k > 0, compute a k-step function f such that

$$\max_{1\leqslant i\leqslant n}\mu_i|f(x_i)-y_i|$$

is minimized.

 Data structure by Guha and Shim: preprocessing π(n) = O(n log n) and query time κ(n) = O(log⁴ n).

Given a set of points in the plane {(x₁, y₁), ..., (x_n, y_n)} with positive weights μ₁, ..., μ_n and an integer k > 0, compute a k-step function f such that

$$\max_{1\leqslant i\leqslant n}\mu_i|f(x_i)-y_i|$$

is minimized.

- Data structure by Guha and Shim: preprocessing π(n) = O(n log n) and query time κ(n) = O(log⁴ n).
- So we obtain an $O(n \log^4 n)$ time algorithm.

Given a set of points in the plane {(x₁, y₁), ..., (x_n, y_n)} with positive weights μ₁, ..., μ_n and an integer k > 0, compute a k-step function f such that

$$\max_{1\leqslant i\leqslant n}\mu_i|f(x_i)-y_i|$$

is minimized.

- Data structure by Guha and Shim: preprocessing π(n) = O(n log n) and query time κ(n) = O(log⁴ n).
- So we obtain an $O(n \log^4 n)$ time algorithm.
- Guha and Shim gave an $O(n \log n + k^2 \log^6 n)$ time algorithm.

• Partition $a_1 a_2 \dots a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.

- Partition $a_1a_2...a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.
- construct a collection of submatrices, each submatrix corresponding to one factor.

- Partition $a_1a_2...a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.
- construct a collection of submatrices, each submatrix corresponding to one factor.
- apply the matrix searching technique on this collection of submatrices, until $O(n/r^2)$ elements remain.

- Partition $a_1 a_2 \dots a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.
- construct a collection of submatrices, each submatrix corresponding to one factor.
- apply the matrix searching technique on this collection of submatrices, until $O(n/r^2)$ elements remain.
- using this information, we do some preprocessing on each subinterval that is not associated with any remaining matrix element.

- Partition $a_1 a_2 \dots a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.
- construct a collection of submatrices, each submatrix corresponding to one factor.
- apply the matrix searching technique on this collection of submatrices, until $O(n/r^2)$ elements remain.
- using this information, we do some preprocessing on each subinterval that is not associated with any remaining matrix element.
- it gives us an $O(n \log \log n / \log n)$ time decision algorithm.

- Partition $a_1 a_2 \dots a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.
- construct a collection of submatrices, each submatrix corresponding to one factor.
- apply the matrix searching technique on this collection of submatrices, until $O(n/r^2)$ elements remain.
- using this information, we do some preprocessing on each subinterval that is not associated with any remaining matrix element.
- it gives us an $O(n \log \log n / \log n)$ time decision algorithm.
- using it to search the whole matrix, we get an $O(n \log \log n)$ optimization algorithm.

- Partition $a_1a_2...a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.
- construct a collection of submatrices, each submatrix corresponding to one factor.
- apply the matrix searching technique on this collection of submatrices, until $O(n/r^2)$ elements remain.
- using this information, we do some preprocessing on each subinterval that is not associated with any remaining matrix element.
- it gives us an $O(n \log \log n / \log n)$ time decision algorithm.
- using it to search the whole matrix, we get an $O(n \log \log n)$ optimization algorithm.
- It can be improved to $O(n \log^* n)$ by cutting the factors recursively.

- Partition $a_1 a_2 \dots a_n$ into n/r factors of length r, for $r = \lceil \log n \rceil$.
- construct a collection of submatrices, each submatrix corresponding to one factor.
- apply the matrix searching technique on this collection of submatrices, until $O(n/r^2)$ elements remain.
- using this information, we do some preprocessing on each subinterval that is not associated with any remaining matrix element.
- it gives us an $O(n \log \log n / \log n)$ time decision algorithm.
- using it to search the whole matrix, we get an $O(n \log \log n)$ optimization algorithm.
- It can be improved to $O(n \log^* n)$ by cutting the factors recursively.
- It can be further improved to O(n), using careful counting arguments.

• Our algorithms for the unweighted cases (sorted and unsorted) are optimal.

- Our algorithms for the unweighted cases (sorted and unsorted) are optimal.
- In the weighted case, there may be room for improvement.

- Our algorithms for the unweighted cases (sorted and unsorted) are optimal.
- In the weighted case, there may be room for improvement.
- Are there other applications of the general formulation of Frederickson's linear time algorithm?

- Our algorithms for the unweighted cases (sorted and unsorted) are optimal.
- In the weighted case, there may be room for improvement.
- Are there other applications of the general formulation of Frederickson's linear time algorithm?
 - Is there a simple randomized algorithm?

- Our algorithms for the unweighted cases (sorted and unsorted) are optimal.
- In the weighted case, there may be room for improvement.
- Are there other applications of the general formulation of Frederickson's linear time algorithm?
 - Is there a simple randomized algorithm?
- L₁-problem: minimize the sum of the vertical distances between P and f.