
Fitting a Step Function to a Point Set

Hervé Fournier1 Antoine Vigneron2

1University of Versailles St-Quentin en Yvelines

2INRA Jouy-en-Josas

December 4, 2008

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 1 / 20

1 Introduction
Problem statement
Our results
Previous work

2 Decision algorithm

3 Optimization algorithm
Searching in a sorted matrix

4 Linear time algorithm
Path partitioning
General framework
Linear-time algorithm for fitting a step function
Weighted version
Frederickson’s algorithm (sketch)

5 Conclusion

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 2 / 20

Problem statement

INPUT: a set P of n points and an integer k .

OUTPUT: a step function f ∗ with k steps that minimizes the
maximum vertical distance ε∗ = d(P, f ∗) between f and P.

d(f ,P) = maxi |f (xi)− yi | when P = {(x1, y1) . . . (xn, yn)}

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 3 / 20

Problem statement

INPUT: a set P of n points and an integer k .

OUTPUT: a step function f ∗ with k steps that minimizes the
maximum vertical distance ε∗ = d(P, f ∗) between f and P.

d(f ,P) = maxi |f (xi)− yi | when P = {(x1, y1) . . . (xn, yn)}
H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 3 / 20

Problem statement

ε∗

INPUT: a set P of n points and an integer k .

OUTPUT: a step function f ∗ with k steps that minimizes the
maximum vertical distance ε∗ = d(P, f ∗) between f and P.

d(f ,P) = maxi |f (xi)− yi | when P = {(x1, y1) . . . (xn, yn)}
H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 3 / 20

Problem statement

ε∗
ε∗

INPUT: a set P of n points and an integer k .

OUTPUT: a step function f ∗ with k steps that minimizes the
maximum vertical distance ε∗ = d(P, f ∗) between f and P.

d(f ,P) = maxi |f (xi)− yi | when P = {(x1, y1) . . . (xn, yn)}
H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 3 / 20

Our results

An O(n log n) time algorithm.

I based on Frederickson and Johnson’s sorted matrix searching technique.

An O(n) time algorithm for sorted input.

I based on Frederickson’s path partitioning algorithm, and the data
structure by Gabow, Bentley, and Tarjan for range maxima.

An O(n log4 n) time algorithm for the weighted case.

An O(n log n · h2) time algorithm when h outliers are allowed.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 4 / 20

Our results

An O(n log n) time algorithm.
I based on Frederickson and Johnson’s sorted matrix searching technique.

An O(n) time algorithm for sorted input.

I based on Frederickson’s path partitioning algorithm, and the data
structure by Gabow, Bentley, and Tarjan for range maxima.

An O(n log4 n) time algorithm for the weighted case.

An O(n log n · h2) time algorithm when h outliers are allowed.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 4 / 20

Our results

An O(n log n) time algorithm.
I based on Frederickson and Johnson’s sorted matrix searching technique.

An O(n) time algorithm for sorted input.

I based on Frederickson’s path partitioning algorithm, and the data
structure by Gabow, Bentley, and Tarjan for range maxima.

An O(n log4 n) time algorithm for the weighted case.

An O(n log n · h2) time algorithm when h outliers are allowed.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 4 / 20

Our results

An O(n log n) time algorithm.
I based on Frederickson and Johnson’s sorted matrix searching technique.

An O(n) time algorithm for sorted input.
I based on Frederickson’s path partitioning algorithm, and the data

structure by Gabow, Bentley, and Tarjan for range maxima.

An O(n log4 n) time algorithm for the weighted case.

An O(n log n · h2) time algorithm when h outliers are allowed.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 4 / 20

Our results

An O(n log n) time algorithm.
I based on Frederickson and Johnson’s sorted matrix searching technique.

An O(n) time algorithm for sorted input.
I based on Frederickson’s path partitioning algorithm, and the data

structure by Gabow, Bentley, and Tarjan for range maxima.

An O(n log4 n) time algorithm for the weighted case.

An O(n log n · h2) time algorithm when h outliers are allowed.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 4 / 20

Our results

An O(n log n) time algorithm.
I based on Frederickson and Johnson’s sorted matrix searching technique.

An O(n) time algorithm for sorted input.
I based on Frederickson’s path partitioning algorithm, and the data

structure by Gabow, Bentley, and Tarjan for range maxima.

An O(n log4 n) time algorithm for the weighted case.

An O(n log n · h2) time algorithm when h outliers are allowed.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 4 / 20

Previous work

Diáz-Báñez and Mesa (2001): O(n2 log n).

Wang (2002): O(n2).

Mayster and Lopez (2006): O(min(n2, nk log n)).

Guha and Shim (2007): O(n + k2 log n), and O(n log n + k2 log6 n)
for the weighted case.

Mayster and Lopez (2008): O(n2) for the weighted case.

In databases, the problem is known as the problem of computing a
Maximum Error Histogram.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 5 / 20

Previous work

Diáz-Báñez and Mesa (2001): O(n2 log n).

Wang (2002): O(n2).

Mayster and Lopez (2006): O(min(n2, nk log n)).

Guha and Shim (2007): O(n + k2 log n), and O(n log n + k2 log6 n)
for the weighted case.

Mayster and Lopez (2008): O(n2) for the weighted case.

In databases, the problem is known as the problem of computing a
Maximum Error Histogram.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 5 / 20

Previous work

Diáz-Báñez and Mesa (2001): O(n2 log n).

Wang (2002): O(n2).

Mayster and Lopez (2006): O(min(n2, nk log n)).

Guha and Shim (2007): O(n + k2 log n), and O(n log n + k2 log6 n)
for the weighted case.

Mayster and Lopez (2008): O(n2) for the weighted case.

In databases, the problem is known as the problem of computing a
Maximum Error Histogram.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 5 / 20

Previous work

Diáz-Báñez and Mesa (2001): O(n2 log n).

Wang (2002): O(n2).

Mayster and Lopez (2006): O(min(n2, nk log n)).

Guha and Shim (2007): O(n + k2 log n), and O(n log n + k2 log6 n)
for the weighted case.

Mayster and Lopez (2008): O(n2) for the weighted case.

In databases, the problem is known as the problem of computing a
Maximum Error Histogram.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 5 / 20

Previous work

Diáz-Báñez and Mesa (2001): O(n2 log n).

Wang (2002): O(n2).

Mayster and Lopez (2006): O(min(n2, nk log n)).

Guha and Shim (2007): O(n + k2 log n), and O(n log n + k2 log6 n)
for the weighted case.

Mayster and Lopez (2008): O(n2) for the weighted case.

In databases, the problem is known as the problem of computing a
Maximum Error Histogram.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 5 / 20

Previous work

Diáz-Báñez and Mesa (2001): O(n2 log n).

Wang (2002): O(n2).

Mayster and Lopez (2006): O(min(n2, nk log n)).

Guha and Shim (2007): O(n + k2 log n), and O(n log n + k2 log6 n)
for the weighted case.

Mayster and Lopez (2008): O(n2) for the weighted case.

In databases, the problem is known as the problem of computing a
Maximum Error Histogram.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 5 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

ε

FALSE if k = 3

TRUE if k = 4
H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 6 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:

I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:

I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:

I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:

I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:
I Sort the εij ’s: O(n2 log n) time.

I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:
I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:
I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:
I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:
I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:
I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 7 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15
6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

a sorted matrix M

an increasing boolean function g : there exists x∗ such that
g(x) = FALSE for all x < x∗, and g(x) = TRUE for all x > x∗.

Problem: search for x∗ in M.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 8 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15
6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

a sorted matrix M

an increasing boolean function g : there exists x∗ such that
g(x) = FALSE for all x < x∗, and g(x) = TRUE for all x > x∗.

Problem: search for x∗ in M.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 8 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15
6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

a sorted matrix M

an increasing boolean function g : there exists x∗ such that
g(x) = FALSE for all x < x∗, and g(x) = TRUE for all x > x∗.

Problem: search for x∗ in M.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 8 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements in submatrices: {1, 5, 6, 12}; median=6.

largest elements in submatrices: {9, 15, 16, 23}; median=16.

we compute g(6) = FALSE and g(16) = TRUE .

we did not make progress.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 9 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements in submatrices: {1, 5, 6, 12}; median=6.

largest elements in submatrices: {9, 15, 16, 23}; median=16.

we compute g(6) = FALSE and g(16) = TRUE .

we did not make progress.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 9 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements in submatrices: {1, 5, 6, 12}; median=6.

largest elements in submatrices: {9, 15, 16, 23}; median=16.

we compute g(6) = FALSE and g(16) = TRUE .

we did not make progress.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 9 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements in submatrices: {1, 5, 6, 12}; median=6.

largest elements in submatrices: {9, 15, 16, 23}; median=16.

we compute g(6) = FALSE and g(16) = TRUE .

we did not make progress.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 9 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10

3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18

8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.

largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23};
median=12.

we compute g(8) = FALSE and g(12) = TRUE .

we can discard 8 submatrices.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 10 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10

3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18

8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.

largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23};
median=12.

we compute g(8) = FALSE and g(12) = TRUE .

we can discard 8 submatrices.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 10 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10

3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18

8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.

largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23};
median=12.

we compute g(8) = FALSE and g(12) = TRUE .

we can discard 8 submatrices.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 10 / 20

Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10

3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15

6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18

8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.

largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23};
median=12.

we compute g(8) = FALSE and g(12) = TRUE .

we can discard 8 submatrices.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 10 / 20

Searching in a sorted matrix

7 8
9 10

7 8 10 11 12 13
8 9 11 12 13 15

6 9 10 11 12 14
7 10 11 13 14 16

8 12
9 13

smallest elements: {1, 3, 5, 6, 7, 8, 10, 12, 13, 15, 19}; median=8.

largest elements: {3, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 19, 23};
median=12.

we compute g(8) = FALSE and g(12) = TRUE .

we can discard 8 submatrices.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 11 / 20

Searching in a sorted matrix

7 8

9 10

7 8 10 11 12 13

8 9 11 12 13 15

6 9 10 11 12 14

7 10 11 13 14 16

8 12

9 13

remaining elements {7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; median=12.

we compute g(12) = TRUE

we discard all elements > 12.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 12 / 20

Searching in a sorted matrix

7 8

9 10

7 8 10 11 12 13

8 9 11 12 13 15

6 9 10 11 12 14

7 10 11 13 14 16

8 12

9 13

remaining elements {7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; median=12.

we compute g(12) = TRUE

we discard all elements > 12.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 12 / 20

Searching in a sorted matrix

7 8

9 10

7 8 10 11 12 13

8 9 11 12 13 15

6 9 10 11 12 14

7 10 11 13 14 16

8 12

9 13

remaining elements {7, 8, 9, 10, 11, 12, 13, 14, 15, 16}; median=12.

we compute g(12) = TRUE

we discard all elements > 12.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 12 / 20

Searching in a sorted matrix

7 8

9 10

7 8 10 11 12

8 9 11 12

6 9 10 11 12

7 10 11

8 12

9

repeat until one value is left.

O(log n) calls to the decision algorithm

O(n log n) time for the rest of the algorithm, assuming each matrix
element can be accessed in O(1) time.

Therefore, we can compute an optimal step function in O(n log n)
time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 13 / 20

Searching in a sorted matrix

7 8

9 10

7 8 10 11 12

8 9 11 12

6 9 10 11 12

7 10 11

8 12

9

repeat until one value is left.

O(log n) calls to the decision algorithm

O(n log n) time for the rest of the algorithm, assuming each matrix
element can be accessed in O(1) time.

Therefore, we can compute an optimal step function in O(n log n)
time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 13 / 20

Searching in a sorted matrix

7 8

9 10

7 8 10 11 12

8 9 11 12

6 9 10 11 12

7 10 11

8 12

9

repeat until one value is left.

O(log n) calls to the decision algorithm

O(n log n) time for the rest of the algorithm, assuming each matrix
element can be accessed in O(1) time.

Therefore, we can compute an optimal step function in O(n log n)
time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 13 / 20

Searching in a sorted matrix

7 8

9 10

7 8 10 11 12

8 9 11 12

6 9 10 11 12

7 10 11

8 12

9

repeat until one value is left.

O(log n) calls to the decision algorithm

O(n log n) time for the rest of the algorithm, assuming each matrix
element can be accessed in O(1) time.

Therefore, we can compute an optimal step function in O(n log n)
time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 13 / 20

Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 14 / 20

Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 14 / 20

Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 14 / 20

Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 14 / 20

Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 14 / 20

Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 14 / 20

Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 14 / 20

General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi)

Frederickson’s problem is obtained with:

I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 15 / 20

General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi)

Frederickson’s problem is obtained with:

I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 15 / 20

General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi)

Frederickson’s problem is obtained with:

I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 15 / 20

General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi)

Frederickson’s problem is obtained with:

I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 15 / 20

General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi)

Frederickson’s problem is obtained with:

I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 15 / 20

General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi)

Frederickson’s problem is obtained with:
I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 15 / 20

General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi)

Frederickson’s problem is obtained with:
I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 15 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.

I Preprocessing: compute Si =
∑i

`=1 ω` for all i .
I Query: (i , j) 7→ θ(ωi , . . . , ωj) =

∑j
`=i ω` = Sj − Si−1.

I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.

(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query
(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.

I Preprocessing: compute Si =
∑i

`=1 ω` for all i .
I Query: (i , j) 7→ θ(ωi , . . . , ωj) =

∑j
`=i ω` = Sj − Si−1.

I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.

I Preprocessing: compute Si =
∑i

`=1 ω` for all i .
I Query: (i , j) 7→ θ(ωi , . . . , ωj) =

∑j
`=i ω` = Sj − Si−1.

I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.

I Preprocessing: compute Si =
∑i

`=1 ω` for all i .
I Query: (i , j) 7→ θ(ωi , . . . , ωj) =

∑j
`=i ω` = Sj − Si−1.

I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.

I Preprocessing: compute Si =
∑i

`=1 ω` for all i .
I Query: (i , j) 7→ θ(ωi , . . . , ωj) =

∑j
`=i ω` = Sj − Si−1.

I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.
I Preprocessing: compute Si =

∑i
`=1 ω` for all i .

I Query: (i , j) 7→ θ(ωi , . . . , ωj) =
∑j

`=i ω` = Sj − Si−1.
I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.
I Preprocessing: compute Si =

∑i
`=1 ω` for all i .

I Query: (i , j) 7→ θ(ωi , . . . , ωj) =
∑j

`=i ω` = Sj − Si−1.

I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.
I Preprocessing: compute Si =

∑i
`=1 ω` for all i .

I Query: (i , j) 7→ θ(ωi , . . . , ωj) =
∑j

`=i ω` = Sj − Si−1.
I π(n) = O(n) and κ(n) = O(1), so running time O(n).

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 16 / 20

Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R
θ(a1 . . . ap) = 1

2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:

I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer
to query

(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 17 / 20

Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R

θ(a1 . . . ap) = 1
2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:

I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer
to query

(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 17 / 20

Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R
θ(a1 . . . ap) = 1

2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:

I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer
to query

(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 17 / 20

Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R
θ(a1 . . . ap) = 1

2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:

I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer
to query

(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 17 / 20

Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R
θ(a1 . . . ap) = 1

2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:
I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer

to query
(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 17 / 20

Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R
θ(a1 . . . ap) = 1

2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:
I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer

to query
(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 17 / 20

Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R
θ(a1 . . . ap) = 1

2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:
I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer

to query
(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 17 / 20

Weighted version

Given a set of points in the plane {(x1, y1), . . . , (xn, yn)} with positive
weights µ1, . . . , µn and an integer k > 0, compute a k-step function f
such that

max
16i6n

µi |f (xi)− yi |

is minimized.

Data structure by Guha and Shim: preprocessing π(n) = O(n log n)
and query time κ(n) = O(log4 n).

So we obtain an O(n log4 n) time algorithm.

Guha and Shim gave an O(n log n + k2 log6 n) time algorithm.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 18 / 20

Weighted version

Given a set of points in the plane {(x1, y1), . . . , (xn, yn)} with positive
weights µ1, . . . , µn and an integer k > 0, compute a k-step function f
such that

max
16i6n

µi |f (xi)− yi |

is minimized.

Data structure by Guha and Shim: preprocessing π(n) = O(n log n)
and query time κ(n) = O(log4 n).

So we obtain an O(n log4 n) time algorithm.

Guha and Shim gave an O(n log n + k2 log6 n) time algorithm.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 18 / 20

Weighted version

Given a set of points in the plane {(x1, y1), . . . , (xn, yn)} with positive
weights µ1, . . . , µn and an integer k > 0, compute a k-step function f
such that

max
16i6n

µi |f (xi)− yi |

is minimized.

Data structure by Guha and Shim: preprocessing π(n) = O(n log n)
and query time κ(n) = O(log4 n).

So we obtain an O(n log4 n) time algorithm.

Guha and Shim gave an O(n log n + k2 log6 n) time algorithm.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 18 / 20

Weighted version

Given a set of points in the plane {(x1, y1), . . . , (xn, yn)} with positive
weights µ1, . . . , µn and an integer k > 0, compute a k-step function f
such that

max
16i6n

µi |f (xi)− yi |

is minimized.

Data structure by Guha and Shim: preprocessing π(n) = O(n log n)
and query time κ(n) = O(log4 n).

So we obtain an O(n log4 n) time algorithm.

Guha and Shim gave an O(n log n + k2 log6 n) time algorithm.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 18 / 20

Weighted version

Given a set of points in the plane {(x1, y1), . . . , (xn, yn)} with positive
weights µ1, . . . , µn and an integer k > 0, compute a k-step function f
such that

max
16i6n

µi |f (xi)− yi |

is minimized.

Data structure by Guha and Shim: preprocessing π(n) = O(n log n)
and query time κ(n) = O(log4 n).

So we obtain an O(n log4 n) time algorithm.

Guha and Shim gave an O(n log n + k2 log6 n) time algorithm.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 18 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.

construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.
construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.
construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.
construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.
construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.
construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.
construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.
construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 19 / 20

Conclusion

Our algorithms for the unweighted cases (sorted and unsorted) are
optimal.

In the weighted case, there may be room for improvement.

Are there other applications of the general formulation of
Frederickson’s linear time algorithm?

I Is there a simple randomized algorithm?

L1-problem: minimize the sum of the vertical distances between P
and f .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 20 / 20

Conclusion

Our algorithms for the unweighted cases (sorted and unsorted) are
optimal.

In the weighted case, there may be room for improvement.

Are there other applications of the general formulation of
Frederickson’s linear time algorithm?

I Is there a simple randomized algorithm?

L1-problem: minimize the sum of the vertical distances between P
and f .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 20 / 20

Conclusion

Our algorithms for the unweighted cases (sorted and unsorted) are
optimal.

In the weighted case, there may be room for improvement.

Are there other applications of the general formulation of
Frederickson’s linear time algorithm?

I Is there a simple randomized algorithm?

L1-problem: minimize the sum of the vertical distances between P
and f .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 20 / 20

Conclusion

Our algorithms for the unweighted cases (sorted and unsorted) are
optimal.

In the weighted case, there may be room for improvement.

Are there other applications of the general formulation of
Frederickson’s linear time algorithm?

I Is there a simple randomized algorithm?

L1-problem: minimize the sum of the vertical distances between P
and f .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 20 / 20

Conclusion

Our algorithms for the unweighted cases (sorted and unsorted) are
optimal.

In the weighted case, there may be room for improvement.

Are there other applications of the general formulation of
Frederickson’s linear time algorithm?

I Is there a simple randomized algorithm?

L1-problem: minimize the sum of the vertical distances between P
and f .

H. Fournier and A. Vigneron (UVSQ, INRA) Fitting a Step Function to a Point Set December 4, 2008 20 / 20

	Outline
	Introduction
	Problem statement
	Our results
	Previous work

	Decision algorithm
	Optimization algorithm
	Searching in a sorted matrix

	Linear time algorithm
	Path partitioning
	General framework
	Linear-time algorithm for fitting a step function
	Weighted version
	Frederickson's algorithm (sketch)

	Conclusion

