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Problem statement

INPUT: a set P of n points and an integer k .

OUTPUT: a step function f ∗ with k steps that minimizes the
maximum vertical distance ε∗ = d(P, f ∗) between f and P.

d(f ,P) = maxi |f (xi )− yi | when P = {(x1, y1) . . . (xn, yn)}
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Our results

An O(n log n) time algorithm.

I based on Frederickson and Johnson’s sorted matrix searching technique.

An O(n) time algorithm for sorted input.

I based on Frederickson’s path partitioning algorithm, and the data
structure by Gabow, Bentley, and Tarjan for range maxima.

An O(n log4 n) time algorithm for the weighted case.

An O(n log n · h2) time algorithm when h outliers are allowed.
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Previous work

Diáz-Báñez and Mesa (2001): O(n2 log n).

Wang (2002): O(n2).

Mayster and Lopez (2006): O(min(n2, nk log n)).

Guha and Shim (2007): O(n + k2 log n), and O(n log n + k2 log6 n)
for the weighted case.

Mayster and Lopez (2008): O(n2) for the weighted case.

In databases, the problem is known as the problem of computing a
Maximum Error Histogram.
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Decision algorithm

Decision problem: given P, k , ε > 0, is there a k-step function f such
that d(P, f ) 6 ε?

Simple O(n) time greedy algorithm by Diáz-Báñez and Mesa:

FALSE if k = 3

TRUE if k = 4
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Optimization algorithm

{y1, . . . , yn} denote the y -coordinates of points in P.

Let εij = 1
2(yi − yj).

Then ε∗ = εij for some i , j .

Simple algorithm:

I Sort the εij ’s: O(n2 log n) time.
I Perform binary search using the decision algorithm: O(n log n).

Can be improved to O(n log n) using Frederickson and Johnson’s
sorted matrix searching technique.

Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
2 (ỹi − ỹn+1−j).

M is a sorted matrix: i 6 i ′ and j 6 j ′ implies Mij 6 Mi ′j ′ .
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Let ỹ1 6 . . . 6 ỹn denote the y -coordinates in sorted order.

Let Mij = 1
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Searching in a sorted matrix

1 2 3 4 5 6 7 8
2 3 5 6 7 8 9 10
3 6 7 8 10 11 12 13
4 7 8 9 11 12 13 15
6 9 10 11 12 14 15 17
7 10 11 13 14 16 17 18
8 12 13 14 15 18 19 20
9 13 14 16 17 19 21 23

a sorted matrix M

an increasing boolean function g : there exists x∗ such that
g(x) = FALSE for all x < x∗, and g(x) = TRUE for all x > x∗.

Problem: search for x∗ in M.
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smallest elements in submatrices: {1, 5, 6, 12}; median=6.

largest elements in submatrices: {9, 15, 16, 23}; median=16.

we compute g(6) = FALSE and g(16) = TRUE .

we did not make progress.
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Searching in a sorted matrix

7 8

9 10
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7 10 11

8 12

9

repeat until one value is left.

O(log n) calls to the decision algorithm

O(n log n) time for the rest of the algorithm, assuming each matrix
element can be accessed in O(1) time.

Therefore, we can compute an optimal step function in O(n log n)
time.
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Path partitioning

INPUT: a path P with n weighted nodes, and an integer k

OUTPUT: a partition of P into k subpaths that minimizes the
maximum weight of the subpaths.

Example: weights {3, 1, 4, 3, 2, 4, 1}, k = 3.

Answer: {3, 1}, {4, 3}, {2, 4, 1}. Max weight=7.

The path partitioning problem can be solved in O(n log n) time by
sorted matrix searching.

Frederickson found an optimal O(n) time algorithm for path
partitioning.

This algorithm works in the following, more general case:
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General framework

Σ an alphabet (e.g. Σ = {a, b} or Σ = R)

θ: Σ∗ → R+ with θ(e) = 0

MIN-MAX PARTITION(θ) problem:

I Given w ∈ Σ∗ and k > 0, compute a factorization w = w1w2 . . .wk

minimizing
max

i∈{1,...,k}
θ(wi )

Frederickson’s problem is obtained with:

I Σ = R+

I θ(a1 . . . ap) = a1 + . . .+ ap
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General framework

Let Σ be an alphabet, and θ : Σ∗ → R+ be a mapping such that
θ(e) = 0. Suppose that θ has the following properties:

(i) θ is non-decreasing, that is, θ(v) 6 θ(uvw) for all u, v ,w ∈ Σ∗.
(ii) We can preprocess a1 . . . an ∈ Σn in time π(n) so that, given any query

(i , j), we can compute θ(ai . . . aj) in time κ(n).

Then MIN-MAX PARTITION(θ) can be solved in time
O(π(n) + nκ(n)).

Example: path partitioning.

I Preprocessing: compute Si =
∑i

`=1 ω` for all i .
I Query: (i , j) 7→ θ(ωi , . . . , ωj) =

∑j
`=i ω` = Sj − Si−1.

I π(n) = O(n) and κ(n) = O(1), so running time O(n).
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Linear-time algorithm for fitting a step function

Application of previous theorem with:

Σ = R
θ(a1 . . . ap) = 1

2 (max(a1, . . . , ap)−min(a1, . . . , ap))

Range maxima problem:

I Preprocess a sequence of numbers (y1, . . . , yn) to allow efficient answer
to query

(i , j) 7→ max(yi , . . . , yj)

I Gabow, Bentley, and Tarjan (1984): O(1) query time and O(n) time
preprocessing.

Conclusion: the sorted case can be solved in O(n) time.
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Weighted version

Given a set of points in the plane {(x1, y1), . . . , (xn, yn)} with positive
weights µ1, . . . , µn and an integer k > 0, compute a k-step function f
such that

max
16i6n

µi |f (xi )− yi |

is minimized.

Data structure by Guha and Shim: preprocessing π(n) = O(n log n)
and query time κ(n) = O(log4 n).

So we obtain an O(n log4 n) time algorithm.

Guha and Shim gave an O(n log n + k2 log6 n) time algorithm.
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Frederickson’s algorithm (sketch)

Partition a1a2 . . . an into n/r factors of length r , for r = dlog ne.

construct a collection of submatrices, each submatrix corresponding
to one factor.

apply the matrix searching technique on this collection of
submatrices, until O(n/r2) elements remain.

using this information, we do some preprocessing on each subinterval
that is not associated with any remaining matrix element.

it gives us an O(n log log n/ log n) time decision algorithm.

using it to search the whole matrix, we get an O(n log log n)
optimization algorithm.

It can be improved to O(n log∗ n) by cutting the factors recursively.

It can be further improved to O(n), using careful counting arguments.
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Conclusion

Our algorithms for the unweighted cases (sorted and unsorted) are
optimal.

In the weighted case, there may be room for improvement.

Are there other applications of the general formulation of
Frederickson’s linear time algorithm?

I Is there a simple randomized algorithm?

L1-problem: minimize the sum of the vertical distances between P
and f .
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