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Abstract

Let ��� and ��� be two sets of � -monotone and non-intersecting curve
segments, �
	��������� and � ����	�� . We give a new sweep-line algorithm
that reports the � intersecting pairs of segments of � . Our algorithm uses
only three simple predicates that allow to decide if two segments intersect, if
a point is left or right to another point, and if a point is above, below or on a
segment. These three predicates seem to be the simplest predicates that lead
to subquadratic algorithms. Our algorithm is almost optimal in this restricted
model of computation. Its time complexity is �������������! "��#�$�%�����%�'& and it
requires �����'& space.

1 Introduction

The usual model to analyze geometric algorithms is the Real RAM which is assumed to
compute exactly with real numbers [14]. This model hides the fact that the arithmetic of
real computers has a limited precision and ignores numerical and robustness issues. As a
consequence a direct implementation of an algorithm that is correct under the Real RAM
model does not necessarily translate into a robust and/or efficient program, and catastrophic
behaviors are commonly observed.

A first approach to remedy this problem is to use exact arithmetic. In the context of
geometric algorithms, much progress has been done in the recent past [17, 18, 15, 13].
Another approach, to be followed here, has emerged recently. Decisions in geometric al-
gorithms depend on geometric predicates which are usually algebraic expressions. For
example, for a triple of points given by their Cartesian coordinates, deciding what is the
orientation of the triangle reduces to evaluating (the sign of) a multivariate polynomial of
degree two. If an algorithm only uses predicates of degree 2 as a function of the input data,
and if the input data are coded as simple fixed precision numbers, computations can be
(
This work has been partially supported by the ESPRIT IV LTR Project No 28155 (GALIA) and

the Action de Recherche Cooprative Gomtrica.)
INRIA Sophia Antipolis, 2004 Route des Lucioles, BP 93, 06904 Sophia-Antipolis, France.*
Hong Kong University of Science and Technology.

1



done exactly using the native double precision hardware of the computer. The degree of
an algorithm is therefore related to the precision required to run an algorithm using exact
arithmetic. This motivates the design of efficient algorithms of low degree. Reducing the
degree of the algorithms will reduce the number and the complexity of the degenerate con-
figurations, make the algorithms more elementary and more general, reduce the amount
of numerical computations, which is usually quite a large fraction of the total execution
time especially if multi-precision computing is invoked, and possibly also refrain the use
of complicated data structures resulting in low space requirements. However, reducing the
degree of an algorithm may increase its time complexity in the Real RAM model. Follow-
ing Liotta et al. [12], we consider the degree of the predicates as an additional measure
of the complexity of problems and algorithms, and intend to elucidate the relationship be-
tween time-complexity and degree of the predicates. Related research can be found in
Knuth’s seminal work [11] and in some recent papers [?, 3, 9].

In this paper, we consider the problem of reporting the � intersecting pairs among
a set of �"� -monotone curve segments. We address the red/blue case, where this set is
partitioned into two subsets of non intersecting segments. This problem can be solved in
optimal �������������  � & time [1, 5, 8]. However these algorithms use predicates of high
degree, e.g. to compare the abscissae of two intersection points or to locate an intersec-
tion point with respect to a vertical slab. These predicates have a degree and an algebraic
complexity that are usually higher than the intersection predicate : this is in particular the
case for line segments and circle segments [3]. Our algorithm only uses the intersection
predicate and two other simple predicates : the predicate that sorts two points by abscissae,
and the predicate that says if a point is below, on, or above a segment. In particular, we
do not compute the arrangement nor the trapezoidal map of the segments. Moreover, the
predicates we use do not say anything about the number or the positions of the intersection
points, and the time complexity of these algorithms depends only on the number of inter-
secting pairs of segments, not the number of intersection points (differently from the other
non trivial algorithms [1, 2, 5, 7, 8]).

The time complexity of our algorithm is ����� �#�$���  ������%�����%�'& , which is close to
optimal, and it uses optimal space ��� �'& . This result generalizes a similar result for the
case of pseudo-segments, i.e. segments that intersect in at most one point [3].

Recently, T. Chan has independently obtained a different algorithm that uses a segment-
tree [6]. Its time-complexity is ��� � �����%�  ��#�$� ��������� �'& and it uses �����  � & space.
We note that this time bound is better than ours for ��	
	 � ��� �� & but worse for � 	
��� ��� �$��� ����� �'& .

2 The problem

A curve segment is � -monotone if it is the graph of a partially defined univariate continuous
function (i.e. any vertical line intersects such a segment in at most one point). Let � 	
� ��� ��� be a set of � � -monotone curve segments such that no two segments of � � (resp.
��� ) intersect. The problem is to report the � pairs of segments of � that intersect.

Let � and ��� be two segments of � and let � and � be two endpoints of some segments of
� , not necessarily of � or ��� . � ��� & and � ��� & denote the coordinates of � , and � � � & denotes

2



the point of � whose abscissa is � (if such a point exists). We consider the following
predicates :

Predicate 1: ��� � ���	��
Predicate 2: � ��� &�� � � � &
Predicate 3: � ��� &�� � � � ��� ��� & & &
Predicate 4: � � � � � ��� & & &	� � � � � � � ��� & & &
Predicate 5: 
 ���� � ��� &�� � � � &�� such that � � � &�	 ��� ��� &

Predicate 1 is mandatory. Predicate 2 allows to sort the endpoints. Predicate 3 tells
whether an endpoint lies above or below a segment. Predicate 4 provides the order of two
segments along a vertical line passing through an endpoint. Predicate 5 checks whether
two segments intersect within a vertical slab defined by two endpoints.

We do not specify a precise representation for the segments, which may depend on the
application. For example, the function associated with a segment may be given explicitly
together with the interval where it is defined, or the function may be given implicitly as the
algebraic function of degree � that interpolates �  �� given points (including the endpoints
of the segment). Other representations are also possible. The degrees of the predicates
clearly depend on the chosen representation. In the table below (see also [3, 10]), the de-
grees of Predicates 2-5 are given for line segments represented by the coordinates of their
endpoints, for half-circles defined by centers, radii plus a boolean (to distinguish between
the upper and the lower arc), for circle segments defined by three points (including the two
endpoints of the segment), and for curves defined by a polynomial equation � 	�� � � & .
Observe that the predicates are ordered by increasing degrees in all those cases. However,
this order may be different for some other types of segments. For instance, for half-circles
defined by three non � -extreme points, the degree of Predicate 2 is 20 while the degree of
Predicate 3 is only 4.

Predicate degree
line half circle pol. of

segment circle segment degree
3 points d

1 2 2 12 d

2 1 1 1 1
3 2 2 4 d

4,5 3 4 12 d

Our algorithm only requires predicates 1, 2 and 3 while other non-trivial algorithms [1,
2, 5, 7, 8]) make use of our five predicates. Thus they have higher algebraic degree when
we consider line segments, half circles or circles defined by three points.

3 Algorithm

In this section, � � (resp. � � ) denotes a blue (resp. red) segment, i.e. � � � � � and � � � � � .
We will prove the following result:

3



Theorem 1 The red-blue curve segment intersection problem can be solved in ��� � ����� �  
��#�$�%�#�$�%�'& time and ��� �'& space using predicates � � � and � .

We present a new plane sweep algorithm for this problem. A vertical sweep line moves
across the plane from left to right. When it reaches an endpoint – a sweep event, some data
structures are updated and intersections can be reported. At any time, we only consider
active segments, which are the segments that cross the sweep line.

Definition 1 A good pair (see figure 1) consists of a blue and a red intersecting segments,
denoted respectively � � and � � , such that the left endpoint of � � is above � � and on the right
of the left endpoint of � � . A bad pair is an intersecting pair that is not a good pair.

In the following subsections, we describe an algorithm that reports the good pairs. The
other intersections are reported by the same algorithm after exchanging the orientation of
the y-axis or the colors of the segments. The algorithm to be described is therefore applied
four times.

3.1 Data structures

The idea is to report the good pairs while pushing the blue segments downwards. Each
blue segment is stored in a set ��� � � & for some active red segment � � . The set of segments
in ��� � � & will be maintained during the sweep. It consists of the blue segments that cannot
be pushed down because they are blocked either by � � or by the lowest segment of ��� � � & .

The above/below relationship within � � (resp. � � ) is a partial order, which is a total
order when restricted to active segments. This relation can be extended to all the pairs
� � � � � & of non-intersecting segments, in which case � is below � � is denoted by ��� ��� ,
and � � � � denotes ��� ��� or � 	 � � . We will maintain the ordered list of the active red
segments in a balanced search tree just like in Chan’s algorithm [5] for red-blue segments.
In order to deal with boundary cases, we will introduce an additional red segment ��� that
is minimum with respect to our order and will always be considered active.

For each blue segment � � , we associate a red segment 	 � � � & . We will require that the
three following properties remain satisfied during the course of the algorithm :

Property 1 As the plane is swept, 	 � � � & can only decrease with respect to the vertical order
of red segments.

Property 2 The good pairs consisting of a blue segment � � and the red segments lying
above 	 � � � & have been reported previously (see figure 3).

Property 3 A blue segment � � can only intersect � � �
	 � � � & to the right of the sweep line
(see figure 1).

Property 1 will be used in the analysis of our algorithm to show that an intersecting
pair is reported at most once. It formalizes the idea that we ”push” the blue segments
downwards as the plane is swept. The next two properties will help to prove the correctness
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Figure 1: ��������� and a good pair

of the algorithm since they imply that, when the sweep line reaches the right endpoint of a
segment, all the good pairs involving that segment have been reported.

For each active red segment � � , we denote by ��� � � & the set of all active blue segments
� � such that 	 � � � &�	 � � . ��� � � & is stored in a mergeable heap data structure, that is a data
structure that allows union, minimum extraction and deletion (e.g. a binomial heap). The
underlying order is the vertical order of active red segments along the sweep line. Note
that we shall not maintain 	 � � � & explicitly, as it is not clear whether we can do it within the
same time bounds. Its value can be retrieved from the heaps ��� � � & . For any red segment
� � , the set � � � � & satisfies the following property:

Property 4 If ��� � � & �	�� , then its minimum does not intersect � � and is above � � (see
figure 1).

However, the sets ��� � � & do not have any simple monotonicity property. For example,
if � � is below � �� , then ��� � � & may be entirely above ��� ���� & or they may be interlaced (see
figure 2).

eb

l(eb)

eb’

l(eb’)

Figure 2: �	�����
� is above �������� � .

Properties 1, 2, 3, and 4 will be the invariants of our algorithm. First we note that they
are maintained between two events of the sweep. Indeed, no change in our data structure is
performed between two events of the sweep, so properties 1, 2 and 4 are not affected. For
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all � � � ��� � � & , Property 4 ensures that the intersection of � � with the sweep line remains
above � � until the next event is reached, so Property 3 is preserved as well.

3.2 Handling the events

We distinguish four kinds of events depending whether the sweep line reaches a left or a
right endpoint of a segment, and whether the segment is red or blue. Each event corre-
sponds to the insertion, the deletion of a blue or a red segment. We will now explain in
detail how these events are handled while maintaining our invariants.

3.2.1 Inserting a red segment

When the sweep line reaches a left endpoint of a red segment � � , � � is just inserted in the
list of active red segments and the heap ��� � � & is initialized as an empty set. Our invariants
are obviously maintained. Note that Property 2 holds because it only deals with good pairs.
This is where this notion is crucial.

3.2.2 Inserting a blue segment

When the sweep line reaches the left endpoint of a blue segment � � , we first determine
the red segment � � that lies just below the endpoint. If � � does not intersect � � , then it is
inserted in ��� � � & . Otherwise, we report this intersecting pair and repeat the same process
with the active red segment that is below ��� until we reach a red segment that does not
intersect � � , which will eventually happen since � � � � � .

eb

l(eb)

er
e r -1

Figure 3: Insertion of ��� .

This procedure can be written in the following way, where � ��� � denotes the active
red segment that lies immediately below � � .
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Insert( � � � � � )
while � � intersects � �

report the intersection
� ��� � � � �

Insert � � in ��� � � &

The intersections between � � and the red segments that are below the left endpoint of
� � and above 	 � � � & have been reported, therefore Property 2 holds for � � . We note that here
� � is above 	 � � � & which shows that Property 3 and Property 4 are maintained.

3.2.3 Removing a red segment

Now suppose the sweep line reaches the right endpoint of a red segment � � . We denote by� the minimum of ��� � � & . If � intersects � � � � , then report the intersection, try again with
� � � � ������� , until a segment � � ��� is found that does not intersect � . Then � is moved from
��� � � & to ��� � � ��� & , and we start again with the new minimum of � � ��� & . Otherwise, if �
does not intersect � � , we simply merge ��� � � & and ��� � � � � & thus maintaining Property 4.

The procedure is as follows (Insert is the procedure we described in the previous
section).

while � 	
	���'� ��� � � & & intersects � � � �
report the intersection
extract � from ��� � � &
Insert( � , � � � � )

� � � � � � &%	 ��� � � � � & � � � � � &

Bad pairs may be reported during this operation, we just discard them by comparing
the coordinates of the left endpoints.

Two kinds of blue segments are dealt with at this step, the ones that will be merged
into ��� � � � � & and the others. For the first category we already mentioned that Property 4
is maintained, it is easy to see that the other invariants are maintained as well. A blue
segment of the second category is handled by a call to Insert( � , � � � � ), which implies
that properties 1 and 2 are maintained. By property 4 the intersection of � � with the sweep
line is above � � , so it will be above the new segment 	 � � � & , and since � � does not cross it, it
means that Property 3 and Property 4 hold.

3.2.4 Removing a blue segment

Suppose now that the sweep line reaches the right endpoint of a blue segment � � and
let � ��	 	 � � � & . As we said before, 	 � � � & can be obtained from the mergeable heap data
structure that stores the sets � ��� & .

If � � is not the minimum of ��� � � & , we just remove it. Otherwise, we still remove �$�
from ��� � � & , but then we need to check whether the new minimum � of ��� ��� & intersects

7



� � . If it does, we push it downwards by running the procedure Insert( � , � � � � ), then repeat
the whole process with the new minimum until it does not intersect �$� , so that Property 4
remains true. It follows that the other invariants are maintained as well.

extract � � from ��� � � &
while � 	
	���'� ��� � � & & intersects � �

report this intersection
extract � from ��� � � &
Insert( � , � � � � )

Once again, this procedure may report bad pairs but this can be fixed by a simple test.

3.3 Proof of correctness

Let us consider a good pair � � � � � � & � ����� ��� . We assume that the sweep line has just
reached the right endpoint of � � or � � , whichever comes first. By Property 3 we know that
	 � � � & � � � . Then Property 2 shows that our intersection has been reported previously.

3.4 Analysis

Maintaining the ordered red segments list takes ��� � �#�$�%�'& time. Localizing an endpoint
or removing it takes ��� �������'& time. The other parts of the algorithm take one mergeable
heap operation for each event or reported intersection.

We first observe that an intersection cannot be reported twice. Let � � and � � be two
intersecting segments. After reporting their intersection once, 	 � � � & � � � . Moreover,
Property 1 states that 	 � � � & can only go down the list of red active segments, and we never
test the intersection between ��� and a segment that lies above 	 � ��� & . Altogether, that means
that our algorithm runs in ��� � �#�$���  � � & time if

�
is the time required to perform a heap

operation.
Plainly, we can implement the sets ��� � � & with binomial heaps [?] so that

� 	 ��� ����� �'& .
We can do better if we first pre–sort the blue segments, and then implement our algorithm
using range–restricted mergeable heaps [?]. This leads to

� 	 �����#�$�������%�'& and an overall
running time �������������  � �#�$�%�������'& .

3.5 Degenerate cases

Since this algorithm is elementary, we only need to consider a few degenerate cases which
turn out to be very easy to handle. Two kinds of degeneracy may occur: either two end-
points have the same abscissa or an endpoint lies on a curve.

The first case can be solved by extending the partial order on endpoints abscissae to
any total order. The order should be the same for each one of the four plane sweeps we
perform, for otherwise some intersecting pairs of segments would never be good.

If a point lies on a segment, we just consider that it is above the segment during two
sweeps and below the segment during the two sweeps with the y-axis reversed.
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Our algorithm can be easily generalized to the case where segments of the same color
are allowed to share endpoints, whose main application is map overlay. We only need to
consider the segments without their endpoints when we define their vertical order.

4 Conclusion

Given a set of general � -monotone segments, we have presented an algorithm to report the
pairs of red-blue segments that intersect. Our algorithm uses only three simple predicates
that allow to decide if two segments intersect, if a point is left or right to another point, and
if a point is above, below or on a segment. These three predicates seem to be the simplest
predicates that lead to subquadratic algorithms. Our algorithm is almost optimal in this
restricted model of computation.

Interestingly, the time complexity of our algorithm depends on the number of pairs of
intersecting segments, not on the number of intersection points. In particular, our algorithm
works even if the segments intersect infinitely many times.

We conclude with some open problems. First, can we remove the �#�$�%�#�$�%� factor in
our time complexity results ?

The 	 ����� �� � �����%�'& lower bound holds for general curve segments. It has been
possible to do better for line segments [3]. Can we also do better for other special curve
segments such as circle segments.

In this paper, we have restricted our attention to � -monotone segments. This may be
a restriction when the points with a vertical tangent are difficult to compute. This is in
particular the case for circles defined by three points where the predicate that compares
� -extreme points has degree 20 while the intersection predicate has degree 12 only.
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