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Abstract

We consider the problem of finding a k-median in a directed tree. We present

an algorithm that computes a k-median in O(Pk2) time where k is the number of

resources to be placed and P is the path length of the tree. In the case of a balanced

tree, this implies O(k2n logn) time, in a random tree O(k2n3/2), while in the worst

case O(k2n2). Our method employs dynamic programming and uses O(nk) space,

while the best known algorithms for undirected trees require O(n2k) space.

Keywords: Algorithms, Analysis of Algorithms, Combinatorial Problems, Dynamic

Programming, k-Median Problem.
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1 Introduction

Let G be a network, with weights on nodes and lengths on edges. The network also contains

resources, or service centers, on some of the nodes. The cost of servicing a request from

node v ∈ G is the length of the shortest path from v to a service center. The cost of the

network is the sum over all nodes of the weight of the node times the cost of servicing the

node. The k-median problem is to find the placement of k resources in nodes of G that

achieves the smallest cost over all placements of k resources. Kariv and Hakimi [1] proved

that this problem is NP-hard in the case of general graphs, and proposed an O(n2k2)

algorithm for undirected trees, where n is the number of tree nodes and k the number

of resources. Auletta et al. [2] studied the same problem on a line, and found an O(nk)

algorithm for this special case. Recently, Li et al. [3] proposed an O(n2k) algorithm for

the same problem on a directed line.

In this paper, we consider the k-median problem on a directed tree, where edges are

directed from child to parent. Our motivation is the optimal placement of cache proxies in a

computer network [3]. A node v makes a service request, e.g., an http request. This request

moves up the tree towards the root, stopping when a proxy is found; if this location is near

v then the request can be satisfied almost immediately. This is similar to web caching,

which is currently commonly used. In this application, the weight of a node represents

the frequency of the requests coming up from that node, the distance between a child and

parent nodes is related to several parameters for the corresponding link (e.g., distance,

traffic, congestion) between the two nodes and the cost function to be minimized is the

overall traffic in the network.

The main contribution of this paper is an algorithm for computing the k-median on a

directed tree in O(Pk2) worst-case time and O(nk) space, where P is the path length of

the tree. The path length P is a well known quantity in combinatorics, and is defined as

the sum over the whole tree of the number of ancestors for each tree node, i.e., the number

of edges on the path from the node to the root. For a balanced binary tree with n nodes

P is Θ(n log n), for random general trees P is Θ(n
√

n ) [4, p. 245] and in the worst case

P = Θ(n2).

We mention that a non-trivial adaptation of the algorithm by Kariv and Hakimi [1]

could achieve the same time bounds as our algorithm but using O(Pk) space (details are

in the appendix). It is not clear, however, how to reduce their space usage. We believe this

to be an important consideration in practice, as our experience shows that space clearly

becomes the main bottleneck for the applicability of these algorithms. We implemented our

algorithm in C and tested it on random trees. On an Indigo 2 Silicon Graphics workstation

with 64MB of RAM, we were able to solve problem sizes of n = 2, 000 nodes and k = 100
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proxies in about 1 minute and n = 5, 000 nodes and k = 100 proxies in about 4 minutes.

(However, the case of n = 10, 000 nodes and k = 100 proxies required over 4 hours of

computing time due to memory (swap) problems.) A preliminary version of our algorithm,

requiring O(Pk) = O(n2k) space, failed to solve instances of even less than n = 1, 000

nodes and k = 100 proxies on the same machine.

2 Notations and Preliminaries

Let T be a rooted tree, all of whose edges are directed upwards towards root u0. For u a

node of T we denote by Tu the subtree rooted at u (note that T = Tu0
). We also denote

by |V | the cardinality of a set V , and by |G| the number of nodes of a graph G. Each

tree node u has weight w(u) and each edge (u, v) a length d(u, v). If v is an ancestor of u,

then we extend d(u, v) to denote the sum of the lengths on the directed path from u to v.

(We remark that our algorithm still works even if d() and w() are arbitrary functions on

an ordered ring.) Let V ⊂ Tu be a set of nodes, which we call proxies , such that u ∈ V . If

v is a tree node, let v′ be the closest ancestor of v belonging to V. We define the cost of

Tu associated with V as follows:

cost(Tu, V ) =
∑

v∈Tu

w(v)d(v, v′)

The minimum cost of placing k proxies in Tu is

‖Tu‖k = min
|V |=k,u∈V

{cost(Tu, V )}.

Vu,k is set to be such that ‖Tu‖k = cost(Tu, Vu,k). Figure 1 illustrates a tree and its

associated values.
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k = 1 : V5,1 = {5} ‖T5‖1 = 25
k = 2 : V5,2 = {5, 4} ‖T5‖2 = 12
k = 3 : V5,3 = {5, 4, 3} ‖T5‖3 = 8
k = 4 : V5,4 = {5, 3, 2, 1} ‖T5‖4 = 1
k = 5 : V5,5 = {5, 4, 3, 2, 1} ‖T5‖5 = 0

Figure 1. A tree and its associated values.

Our algorithm uses dynamic programming, and it is based upon a careful decomposition

of the input tree. In particular, the tree is split into three parts: a right part, which is
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assumed to be empty of proxies, so that its contribution to the total cost can be easily

computed; a middle part, which is a subtree whose cost has already been computed; and

a left part whose contribution is computed recursively. We now provide the details of this

decomposition.

2.1 Ordering and Splitting the Tree

We start by ordering the tree nodes according to a postorder traversal of the tree, as shown

in Figure 2. In the remainder of our description we will identify each node of T with its

postorder numbering, i.e., a distinct integer in the closed interval [1, n].
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Figure 2. Ordering the nodes.

Let l1 < l2 < ... < lr be the set of leaves of T . Denote by mv the lowest numbered node

of Tv. Notice that mv must be a leaf; in particular it is the leftmost leaf of Tv. Let li = mv:

if i 6= 1 we define m′
v = li−1 (i.e., the leaf immediately preceding mv in the ordering). As

an example, in Figure 2, m11 = 6 and m′
11 = 4. It can be easily proved that for all vertices

v ∈ T , Tv = [mv, v].

Let v ∈ Tu. Our dynamic programming algorithm works with the following decompo-

sition of the tree, as illustrated in Figure 3. Note that ‘[’ and ‘]’ represent closed interval

boundaries, ‘(’ and ‘)’, open ones:

Lu,v = [mu,mv), Tv = [mv, v], Ru,v = (v, u].

We remark that Lu,v depends only on mv and not v. In particular Lu,v = Lu,mv
. We

define the following extra costs associated with these three parts:

. ‖Ru,v‖1 =
∑

x∈Ru,v
d(x, u)w(x) is the cost of Ru,v, assuming that u is its only proxy.
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Figure 3. The decomposition of the tree into three parts.

. ‖Tu,v‖0 =
∑

x∈Tv
d(x, u)w(x) is the cost of Tv, assuming that Tv contains no proxies

and that v is the proxy servicing all of Tv.

. ‖Lu,v‖t is the min cost of Lu,v, assuming that there are t proxies in Lu,v and that u is

the only proxy in Ru,v (if mu = mv then Lu,v = ∅ and ‖Lu,v‖t = 0).

Note that ‖Lu,v‖t is well defined (as there is no directed path from any node of Lu,v to

any node of Tv) and thus the cost of Lu,v does not depend on the proxies of Tv.

2.2 Dynamic Programming Recurrences

In this section we derive the recurrence relations upon which the correctness of our algo-

rithm hinges.

Lemma 2.1. Let u be any vertex in T and t any positive integer, 1 < t ≤ |Tu|. Then

‖Tu‖t>1 = min
v∈Tu−{u}

1≤t′<t

t−|Lu,v |−1≤t′≤|Tv |

{‖Tv‖t′ + ‖Lu,v‖t−t′−1 + ‖Ru,v‖1}
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Proof: Assume that we know v, the highest numbered proxy in Tu different from u.

Then the minimum cost of placing t proxies in Tu is found by assuming that Tv contains

t′ proxies, Lu,v contains t − t′ − 1 proxies, calculating the best possible cost under this
assumption and then minimizing over t. Note that each of the two sets must contain an

optimal proxy placement so the minimum cost of placing t proxies in Tu is

min
1≤t′<t

t−|Lu,v |−1≤t′≤|Tv |

{‖Tv‖t′ + ‖Lu,v‖t−t′−1 + ‖Ru,v‖1}.

Each set can not contain more proxies than its size so t′ ≤ |Tv| and t− t′− 1 ≤ |Lu,v| Since
we have no a-priori information about v we must then minimize over all possible values of

v.

Lemma 2.2. Let u, v be any vertices in T such that u is an ancestor of v and let t be

any positive integer smaller than |Lu,v|. Then

‖Lu,v‖t>0 = min
x∈Lu,v

1≤t′≤t

t−|Lu,x|≤t′≤|Tx|

{‖Tx‖t′ + ‖Lu,x‖t−t′ + ‖Ru,x‖1 − ‖Ru,v‖1 − ‖Tu,v‖0}

Proof: We must compute the best placement of t proxies that minimizes the cost of

Lu,v. Assume we know x, the highest numbered proxy in Lu,v. Then Lu,v is split into

three parts, as illustrated in Figure 4. The middle part is Tx which we assume contains t′

proxies, so t′ ≤ |Tx|. This leaves t− t′ proxies in the left part, Lu,x, so t− t′ ≤ |Lu,x|. The
right part is Ru,x − Ru,v − Tu,v; since it is empty of proxies, its contribution to the cost is

‖Ru,x‖1 − ‖Ru,v‖1 − ‖Tu,v‖0. In order to find the contribution of the middle and the left
parts, we must minimize over t′ the sum ‖Tx‖t′ + ‖Lu,x‖t−t′ . Finally, we must minimize

this value over all choices of x.

Taking into account the definitions of Lu,v and Lu,x the statements in Lemmas 2.1

and 2.2 can actually be written slightly differently:

‖Tu‖t>1 = min
mu≤v<u

1≤t′<t

t−|Lu,v |−1≤t′≤|Tv |

{‖Tv‖t′ + ‖Lu,mv
‖t−t′−1 + ‖Ru,v‖1} (1)

‖Lu,v‖t>0 = min
mu≤x<mv

1≤t′≤t

t−|Lu,x|≤t′≤|Tx|

{‖Tx‖t′ + ‖Lu,mx
‖t−t′ + ‖Ru,x‖1 − ‖Ru,v‖1 − ‖Tu,v‖0} (2)

We now derive another recurrence relation that allows us to compute ‖Lu,v‖t more
efficiently. It effectively permits reducing the range of x over which ‖Lu,v‖t must be mini-
mized.
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Figure 4. Computing ‖Lu,v‖t as in Lemma 2.2.

Theorem 2.3. Let u be any vertex in T , let v ∈ Tu such that mv 6= mu. Then

‖Lu,v‖t = min{Au,v,t, Bu,v,t} (3)

where

Au,v,t = ‖Lu,m′v‖t + ‖Ru,m′v‖1 + ‖Tu,m′v‖0 − ‖Ru,v‖1 − ‖Tu,v‖0,

Bu,v,t = min
m′v≤x<mv

1≤t′≤t

t−|Lu,x|≤t′≤|Tx|

{‖Tx‖t′ + ‖Lu,x‖t−t′ + ‖Ru,x‖1 − ‖Ru,v‖1 − ‖Tu,v‖0}.

Proof: Recall that

‖Lu,m′v‖t = min
mu≤x<m′v

1≤t′≤t

t−|Lu,x|≤t′≤|Tx|

{‖Tx‖t′ + ‖Lu,x‖t−t′ + ‖Ru,x‖1 − ‖Ru,m′v‖1 − ‖Tu,m′v‖0}.

In the definition of Au,v,t replace ‖Lu,m′v‖t by the right hand side of this equation. After
some algebra, we obtain:

Au,v,t = min
mu≤x<m′v

1≤t′≤t

t−|Lu,x|≤t′≤|Tx|

{‖Tx‖t′ + ‖Lu,x‖t−t′ + ‖Ru,x‖1 − ‖Ru,v‖1 − ‖Tu,v‖0}.

The proof of the theorem then follows directly from (2).
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3 The Algorithm

We now present an algorithm that computes ‖Tu0
‖k and Vu0,k in O(Pk2) time and O(nk)

space, where n is the number of nodes in Tu0
, and P is the path length of tree T , which

is defined as the sum over T of the number of ancestors of each node. Our algorithm can

be divided into two phases. In the first phase, we compute ‖Tu‖t for each node u and

1 ≤ t ≤ k via dynamic programming. In the second phase, we compute the optimal set of

proxies Vu0,k. We start by describing the first phase.

L1: Order the nodes of the tree; ∀v compute mv and m′
v, as defined in Section 2.1.

L2: For u = 1 to n do

L3: Initialization: For all v ∈ Tu, compute ‖Tv‖1, ‖Tu,v‖0, ‖Ru,v‖1 and ‖Lu,v‖0.
L4: For t = 2 to k do

L5: For v = mu + 1 to u− 1 do
L6: If v = mv compute ‖Lu,v‖t−1 using (3)

L7: Compute ‖Tu‖t using (1).
L8: Release the memory used, except for ‖Tv‖t, v ∈ [1..u], t ∈ [1..k].

A couple of remarks are in order. First, notice that in line L6 whenever t− 1 > |Lu,v|,
it is not necessary to compute ‖Lu,v‖t−1 (since it is not defined). Second, in line L7 it is

not necessary to compute ‖Tu‖t for t > |Tu|.

Theorem 3.1. The First Phase requires O(Pk2) time and O(nk) space.

Proof: We first analyze the worst-case running time. The first step (L1) can be

straightforwardly implemented in linear time. Step (L3) can be done in O(|Tu|) time
using dynamic programming. Line (L7) is O(k|Tu|). The loop (L5) essentially enumer-
ates all the possible values of mv in Tu following the order we defined in Section 2.1

and calculates ‖Lu,mv
‖t−1. By recurrence (3), this computation takes O((mv − m′

v)t).

Let the leaves of Tu be la < la+1 < ... < lb. Then the running time of loop (L5) is

O(t
∑b

i=a+1(li − li−1)) = O(t(lb − la)) < O(t(u − mu)) and therefore loop (L5) requires

overall O(t|Tu|) time. As loop (L4) requires overall O(k2|Tu|) time, the total running time
of the algorithm is O(k2

∑

u∈T |Tu|) = O(Pk2), where P is the path length of T .

We next analyze the space usage. The program needs to store all values ‖Tu‖t, using
O(nk) space in total. For fixed current u and each v, ‖Tu,v‖0,‖Ru,v‖1 and ‖Lu,v‖0 have
to be stored, using O(n) space. We also need to store ‖Lu,v‖t for current u and all the

possible values of t and v, using O(nk).
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In the second phase, we recursively compute Vu0,k using the values of ‖Tu‖t calculated
and stored during the first phase. We use (xu,v,t, cu,v,t) to denote the pair (x, t′) that

achieves the minimum of ‖Lu,v‖t in recurrence (3).
The second phase is implemented by a recursive procedure Proxies(u, t), which returns

Vu,t. We now describe how this procedure works. If t = 1 it simply returns {u}. Otherwise,
t > 1 and it searches for the highest numbered proxy, according to the order given in

Section 2.1. We call this node Nu,1 and denote the number of proxies in TNu,1
by Cu,1 (see

Figure 5). Both Nu,1 and Cu,1 can be computed using recurrence (1). Next, we define

Nu,2 as being the highest node of Vu,t that does not belong to TNu,1
∪ {u}, and Cu,2 as

the number of proxies of TNu,2
. We compute the values (Nu,i, Cu,i), i ≥ 1 until we reach

Cu,1 + Cu,2 + ... + Cu,h = t − 1. Finally, Proxies returns {u} ∪ Proxies(Cu,1, Nu,1) ∪
Proxies(Cu,2, Nu,2) ∪ . . . ∪ Proxies(Cu,h, Nu,h).
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u,1
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no proxy
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Figure 5. The Second Phase.

The algorithm pseudocode follows. Notice that lines (L2)–(L5) are analogous to the

first phase. We further assume that the values of ‖Tu‖t, mv and m′
v computed during the

first phase are still available.

Proxies(u, t)

L1: If t = 1 then return {u};

L2: Initialization: For each v ∈ Tu, compute ‖Tv‖1, ‖Tu,v‖0,‖Ru,v‖1 and ‖Lu,v‖0.

L3: For t = 2 to k do

L4: For v = mu + 1 to u− 1 do
L5: If v = mv compute ‖Lu,v‖t−1,xu,v,t−1 and cu,v,t−1 using (3).
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L6: Compute ‖Cu,1‖ and ‖Nu,1‖ using (1).

L7: i← 2; t← t− Cu,1 − 1;

L8: if t = 0 goto L12:

L9: (Cu,i, Nu,i) = (xu,Nu,i−1,t, cu,Nu,i−1,t)

L10: t← t− Cu,i; i← i+ 1

L11: goto L8:

L12: Release memory except for ‖Tu,t‖,∀u,∀t and (Cu,i, Nu,i),∀i.

L13: Return {u}∪Proxies(Nu,i−1, Cu,i−1)∪Proxies(Nu,i−2, Cu,i−2)∪. . .∪Proxies(Nu,1, Cu,1)

Theorem 3.2. The Second Phase requires O(Pk2) time and O(nk) space.

Proof: The first part (lines (L2)–(L6)) is executed as in the first phase, and thus requires

at most O(Pk2) time by Theorem 3.1. Loop (L8)–(L11) is executed at most k times, since

each computation of (Nu,i, Cu,i) implies a recursive call to Proxies on line (L13). The

running time of lines (L8)–(L11) is O(nk) (due to the cost of computing recurrence (3)),

and thus the overall cost of (L8)–(L13) is O(nk2).

As for the space usage, in the second phase we need to store the same variables stored

in the first phase plus the arrays (Nu,i, Cu,i) and (cu,v,t, xu,v,t). Since we only need to store

these values for the current u, it uses overall O(nk) space.
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Appendix: Another Algorithm

In this appendix we briefly describe the adaptation, mentioned in the introduction, of

Kariv and Hakimi’s [1] algorithm that achieves the same time complexity of O(Pk2) but

requires O(Pk) space.

A node u is said to cover the subtree Tv if it is the closest ancestor of v that hosts a

proxy. Cu,v,t denotes the contribution of Tv to the overall cost knowing both that u covers

Tv and that Tv contains t proxies. This quantity is computed for every triple (u, v, t) such

that t < k and u is an ancestor of v. This can be done by a postorder traversal of the tree

according to v as in the previous algorithm.

Suppose v1, v2, ...vi are the sons of v. Then a straightforward derivation yields:

Cu,v,t = min(Au,v,t, Bv,t) (4)

where

Au,v,t = min
t1+t2+...+ti=t

(Cu,v1,t1 + Cu,v2,t2 + ...+ Cu,vi,ti) (5)

and

Bv,t = min
t1+t2+...+ti=t−1

(Cv,v1,t1 + Cv,v2,t2 + ...+ Cv,vi,ti) (6)

The minimizations in (5) and (6) can be performed in O(it) time by recursively com-

puting the contribution of Tv1
∪ Tv2

... ∪ Tvj
for increasing j (since this quantity can be

obtained in O(t) time when the contribution of Tv1
∪ Tv2

... ∪ Tvj−1
is known). Performing

the minimizations by doing a postorder traversal of the tree by v, and then for each v

running over all u ∈ Tv and all t, yields a O(Pk2) running time.
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