
Packing Two Disks into a Polygonal Environment
�

Prosenjit Bose
�
, Pat Morin

�
, and Antoine Vigneron

�
�

Carleton University. jit@scs.carleton.ca�
McGill University. morin@cs.mcgill.ca�

Hong Kong University of Science and Technology. antoine@cs.ust.hk

Abstract. We consider the following problem. Given a polygon � , possibly with
holes, and having � vertices, compute a pair of equal radius disks that do not
intersect each other, are contained in � , and whose radius is maximized. Our
main result is a simple randomized algorithm whose expected running time, on
worst case input, is 	�
����������� . This is optimal in the algebraic decision tree
model of computation.

1 Introduction

Let � be a polygon, possibly with holes, and having � vertices. We consider the fol-
lowing problem, which we call 2-DISK: Find a pair of disks with radius ��� that do not
intersect each other, are contained in � , and such that ��� is maximized. Biedl et al.[5]
gave an ����� �� time algorithm to solve this problem.

Special cases of 2-DISK have been studied previously. When � is a convex poly-
gon, Bose et al. [6] describe a linear time algorithm and Kim and Shin [10] describe
an ���!�#"%$'&(� time algorithm. For simple polygons (i.e. polygons without holes), Be-
spamyatnikh [4] gives an ������"%$'& � � time algorithm based on the parametric search
paradigm [11].

Another special case occurs when the holes of � degenerate to points. This is
known as the maximin 2-site facility location problem [3, 9]. In this formulation we
can think of the centers of the two disks as obnoxious facilities such as smokestacks,
or nuclear power plants, and the points as population centers. The goal is maximize
the distance between each facility and the nearest population center. Katz et al. [9]
give an ������")$*&(� time algorithm for the decision version of the 2-site facility location
problem in which one is given a distance + and asked if there exists a placement of 2
non-intersecting disks of radius + , each contained in � such that no point is included in
either of the disks.

In this paper we present a simple randomized algorithm for the general case in which
� is not necessarily convex and may contain holes. Our algorithm runs in ���!�#"%$'&,�
expected time. It can also be used to solve the optimization version of the 2-site max-
imin facility location problem in ������"%$'&(� time. Finally we observe that, when we
allow polygons with holes, -.�!�#"%$'&(� is a lower bound for 2-DISK by a simple reduc-
tion from MAX-GAP.
/

This research was supported by the Natural Sciences and Engineering Research Council of
Canada and by the Hong Kong Research Grant Council CERG grant HKUST6137/98E.

The remainder of the paper is organized as follows: Section 2 reviews definitions
and previous results regarding the medial-axis. Section 3 describes our algorithm. Section 4
summarizes and concludes with an open problem.

2 The Medial-Axis

For the remainder of this paper, � will be a polygon, possibly with holes, and having �
vertices. The medial-axis � �!� of � is the locus of all points � for which there exists
a disk centered at � , contained in � , and which intersects the boundary of � in two or
more points. See Fig. 1 for an example. Alternatively, � � � is a portion of the Voronoi
diagram of the open line segments and vertices defined by the edges of � . To be more
precise, we need to remove the Voronoi edges that are outside � and those associated
with an edge and one of its endpoints. It is well known that the medial-axis consists of
����� straight line segments and parabolic arcs.

Fig. 1. The medial-axis of a polygon with a triangular hole.

Algorithmically, the medial-axis is well understood. There exists an ����� time al-
gorithm [7] for computing the medial-axis of a polygon without holes and ������")$*&(�
time algorithms for computing the medial-axis of a polygon with holes [2]. Further-
more, these algorithms can compute a representation in which each segment or arc is
represented as a segment or arc in � �

�
, where the third dimension gives the radius of

the disk that touches two or more points on the boundary of � .
We say that a point ��� � supports a disk of radius � if the disk of radius � centered

at � is contained in � . We call a vertex, parabolic arc or line segment � of � �!� an
elementary object if the radius of the largest disk supported by ����� is monotone as
� moves from one endpoint of � to the other. Each edge of � �!� can be split into
two elementary objects. Thus, � � � can be split into ���!� elementary objects whose
union is � �!� .

3 The Algorithm

Next we describe a randomized algorithm for 2-DISK with ���!�#"%$'&,� expected running
time. We begin by restating 2-DISK as a problem of computing the diameter of a set of

elementary objects under a rather unusual distance function. We then use an algorithm
based on the work of Clarkson and Shor [8] to solve this problem in the stated time.

The following lemma, of which similar versions appear in Bose et al. [6] and Biedl
et al. [5], tells us that we can restrict our search to disks whose centers lie on � �!� .
Lemma 1. Let � � and � � be a solution to 2-DISK which maximizes the distance be-
tween � � and � � and let � � and � � be the centers of � � and � � , respectively. Then � �
and � � each intersect the boundary of � in at least two points and hence � � and � � are
points of � �!� .
Proof. Refer to Fig. 2. Suppose that one of the disks, say � � , intersects the boundary
of � in at most one point. Let � � be this point, or if � � does not intersect the boundary
of � at all then let � � be any point on the boundary of � � . Note that there is some value
of ����� such that � � is free to move by a distance of � in either of the two directions
perpendicular to the direction ���
	� � � � while keeping � � in the interior of � . However,
movement in at least one of these directions will increase the distance � � � � � � , which is
a contradiction since this distance was chosen to be maximal over all possible solutions
to 2-DISK.

� �
� �

� �

� �

Fig. 2. The proof of Lemma 1

Let � � and � � be two elementary objects of � � � . We define the distance between
� � and � � , denoted + � � �� � � as � � , where � is the radius of the largest pair of equal-
radius non-intersecting disks + � and + � , contained in � and with +�� centered on ��� , for����� � � . There are two points to note about this definition of distance: (1) if the distance
between two elementary objects is � � , then we can place two non-intersecting disks of
radius � in � , and (2) the distance from an elementary object to itself is not necessarily
0. Given two elementary objects it is possible, in constant time, to compute the distance
between them as well as the locations of 2 disks that produce this distance [5].

Let � be the set of elementary objects obtained by taking the union of the following
three sets of elementary objects:

1. the set of vertices of � �!� ,

2. the set of elementary line segments obtained by splitting each straight line segment
of � �!� into at most two elementary objects.

3. the set of elementary parabolic arcs obtained by splitting each parabolic arc of
� �!� into at most two elementary objects.

We call the diameter of � the maximum distance between any pair � ��� � � , where
distance is defined as above. Now, it should be clear from Lemma 1 that 2-DISK can be
solved by finding a pair of elements in � whose distance is equal to the diameter of � .1

Thus, all that remains is to devise an algorithm for finding the diameter of � . Let �
denote the cardinality of � and note that, initially, � � ����� . Motivated by Clarkson
and Shor [8], we compute the diameter using the following algorithm. We begin by
selecting a random element � from � and finding the element ��� � � whose distance
from � is maximal, along with the corresponding radius � . This can be done in �����
time, since each distance computation between two elementary objects can be done
in constant time. Note that � is a lower bound on ��� . We use this lower bound to do
trimming and pruning on the elements of � .

We trim each element � � � by partitioning � into two subarcs,2 each of which
may be empty. The subarc ��� is the part of � supporting disks of radius greater than or
equal to � . The subarc �	� is the remainder of � . We then trim ��� from � by removing
� from � and replacing it with ��� . During the trimming step we also remove from �
any element that does not support a disk of radius greater than � . Each such trimming
operation can be done in constant time, resulting in an ���
�

running time for this step.
Next, we prune � . For any arc � � � , the lowest point of � is its closest point

to the boundary of � . In the case of ties, we take a point which is closest to one of
the endpoints of � . By the definition of elementary objects, the lowest point of � is
therefore an endpoint of � . The closed disk with radius � centered on the lowest point
of � is denoted by � � � . We discard all the elements � � � such that � � � �� � � � ����
for all � � � .

Pruning can be performed in ���
� ")$*&��
time by computing, for each lowest end-

point � , a matching lowest endpoint � whose distance from � is maximal and then
discarding � if � ��� ��� � � . This computation is known as all-pairs furthest neighbors
and can be completed in ���
� ")$*&��

time [1].
Once all trimming and pruning is done, we have a new set of elementary objects

��� on which we recurse. The recursion completes when � ��� ��� � , at which point we
compute the diameter of ��� in constant time using a brute-force algorithm. We output
the largest pair of equal-radius non-overlapping disks found during any iteration of the
algorithm.

To prove that this algorithm is correct we consider a pair of non-intersecting disks
� � and � � , each contained in � and having radius � � , centered at � � and � � , respec-
tively, such that the Euclidean distance � � � � � � is maximal. The following lemma shows
that � � and � � are not discarded from consideration until an equally good solution is
found.

1 Here we use the term “pair” loosely, since the diameter may be defined by the distance between
an elementary object and itself.

2 We use the term subarc to mean both parts of segments and parts of parabolic arcs.

Lemma 2. If, during the execution of one round, � � � � � ������� � and ��� �*� , then
� � �� � �	�
��� � � at the end of the round.

Proof. We need to show that at the end of the round, there exists elementary objects
� � ���'� � ��� such that � � � � � and � � � �'� . More specifically, we need to show there
exists ��� � �*� � � such that � � , respectively � � is not trimmed from � � , respectively �*� ,
and � � and �*� are not pruned.

To see that � � and � � are not trimmed from any elementary object that contains them
we simply note that � � and � � both support disks of radius � � � � and are therefore not
trimmed.

To prove that � � and � � are not pruned we subdivide the plane into two open halfs-
paces � � and � � such that all points in � � are closer to � � than to � � and vice-versa.
We denote by the line separating these two halfspaces.

Recall that, after trimming, an elementary object � is only pruned if � � � � � � � ��
for all � � � . We will show that � � � � �� � � and � � �*� �� � � , therefore � � ��� ��

� � �'� � �
and neither ��� nor �*� are pruned. It suffices to prove that � � ��� �� � �

since a symmetric argument shows that � � � � �� � � . We consider three separate cases
depending on the location of � � on � � � .
Case 1: � � is a vertex of � � � . In this case we choose � � to be the singleton elementary
object � � ��� . Thus, � � � � is centered at � � . Furthermore, the distance between � � and
 is at least �*� � � . Therefore, one point of � � � � is contained in � � and � � � � does
not intersect the boundary of � � so it must be that � � � � �� � � .

L

� �

� � �

�

� �
� � � �

� �

� �

� �

Fig. 3. The proof of Lemma 2 Case 2

Case 2: � � lies in the interior of a straight line segment of � � � . Let � � � be the lower
endpoint of ��� . Let

�
be the angle � � � � � � � � ��� � (see Fig. 3). If

�
��� ����� � � ��� �	� then we

can move � � slightly in the direction opposite to ��� � while keeping � � inside � , thus
contradicting the assumption that � � � � � � is maximal. Therefore

�
��� ��� � ��� ��� ��� , which

implies that � � � � lies in � � .

Case 3: � � lies in the interior of a parabolic arc of � �!� . In this case � � is tangent to an
edge � � of � and touches one of its vertices � . � � � still denotes the lower endpoint of � � .
Without loss of generality, assume that � � is parallel to the � –axis and ��� � � � � ��� � �
(see Fig. 4). Let � be the line parallel to that crosses the segment � � � � � � � and that is
tangent to � � . We denote by � � the point where � � is tangent to � � , and we denote by
� � � the point such that � � � � � � � is a diameter of � � . Finally, the convex hull of � � and
� � � � is denoted by

�
.

 �

� �
�

�

� �

� �

�

� � �

�

� �

� �
��� �

� �

�

� � � �

Fig. 4. The proof of Lemma 2 Case 3.

It must be that � � � � ��� � � � , otherwise � � and � � could be moved in the positive
� direction while keeping � � in � . This would increase the distance � � � � � � which is
defined as maximal. It follows that � is tangent to � � along the counterclockwise arc
� � � � � � � . Then � is tangent to

�
, so by convexity

�
lies on the same side of � as � �

which implies that � � is contained in � � .
Let + � denote the distance of the furthest element in � from � � , and suppose for the

sake of analysis that the elements of � are labeled � � ������� � �	� so that + � � + ��
 � . The
following lemma helps to establish the running time of the algorithm.

Lemma 3. If we select � � ��� as the random element, then we discard all �	� � � such
that � �

from � .

Proof. For any � �
, either ��� does not support a disk of radius greater than + � , or

every point on ��� that supports a disk of radius + � is of distance at most +�� from any
other point of � �!� that supports a disk of radius + � .

In the first case, ��� is removed from � by trimming. In the second case, � � �	� �
� � ��� � �

for all ��� � � and ��� is removed by pruning.

Finally, we state and prove our main theorem.

Theorem 1. The above algorithm solves 2-DISK in ������"%$'&(� expected time.

Proof. The algorithm is correct because, by Lemma 2, it never discards � � nor � � until
it has found a solution with � � � � , at which point it has already found an optimal
solution that will be reported when the algorithm terminates.

To prove the running time of the algorithm, we use the following facts. Each round
of the algorithm can be completed in ����� "%$'& �

time where � is the cardinality of �
at the beginning of the round. By Lemma 3, when we select � � as our random element,
all elements ��� with � �

disappear from � . Therefore, the expected running time of
the algorithm is given by the recurrence

� �
� �
�
�

��
��� �

� ��� � �
 �� ���
� ")$*& � �

which readily solves to ����� "%$'& �
. Since � � ���!� , this completes the proof.

4 Conclusions

We have given a randomized algorithm for 2-DISK that runs in ������")$*&(� expected
time. The algorithm is considerably simpler than the ���!�#"%$'& � � algorithm of Be-
spamyathnikh [4] and has the additional advantage of solving the more general prob-
lem of polygons with holes. Although we have described our algorithm as performing
computations with distances, these can be replaced with squared distances to yield an
algorithm that uses only algebraic computations.

In the algebraic decision tree model of computation, one can also prove an -.�!�#"%$'&(�
lower bound on any algorithm for 2-DISK through a reduction from MAX-GAP [12].
Suppose that the input to MAX-GAP is � � ������� ��� � . Without loss of generality one can
assume that ��� ���
	�� � � �� � � � � � � and � � ����� � � � �� � � � � � � . We then
construct a rectangle with top and bottom sides at ��� and � � , respectively, and with
width � � � � � ���

. The interior of this rectangle is then partitioned into rectangles with

horizontal line segments having � coordinates � � ��������� � � . See Fig. 5 for an example.

� �
�'�
�'�

� �
...

Fig. 5. Reducing MAX-GAP to 2-DISK.

It should then be clear that the solution to 2-DISK for this problem corresponds
to placing two disks in the rectangle corresponding to the gap between � � and � ��
 �

which is maximal, i.e., it gives a solution to the original MAX-GAP problem. Since this
reduction can be easily accomplished in linear time and MAX-GAP has an -�����"%$'&,�
lower bound, this yields an -.�!��")$*& � lower bound on 2-DISK.

The above reduction only works because we allow polygons with holes. An inter-
esting open problem is that of determining the complexity of 2-DISK when restricted to
simple polygons. Is there a linear time algorithm?

References

1. P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees, and
related problems in higher dimensions. Comput. Geom.: Theory & Appl., 4:189–201, 1992.

2. Helmut Alt and Otfried Schwarzkopf. The Voronoi diagram of curved objects. In Proc. 11th
Annu. ACM Sympos. Comput. Geom., pages 89–97, 1995.

3. Boaz Ben-Moshe, Matthew J. Katz, and Michael Segal. Obnoxious facility location: Com-
plete service with minimal harm. International Journal of Computational Geometry and
Applications, 10:581–592, 2000.

4. S. Bespamyatnikh. Draft: Efficient algorithm for finding two largest empty circles. In Pro-
ceedings of the 15th European Workshop on Computational Geometry (EuroCG’99), pages
37–38, 1999.

5. T. C. Biedl, E. D. Demaine, M. L. Demaine, A. Lubiw, and G. T. Toussaint. Hiding disks
in folded polygons. In Proceedings of the 10th Canadian Conference on Computational
Geometry (CCCG’98), 1998.

6. P. Bose, J. Czyzowicz, E. Kranakis, and A. Maheshwari. Algorithms for packing two circles
in a convex polygon. In Proceedings of Japan Conference on Discrete and Computational
Geometry (JCDCG ’98), pages 93–103, 1998.

7. F. Chin, J. Snoeyink, and C. A. Wang. Finding the medial axis of a simple polygon in linear
time. Discrete and Computational Geometry, 21, 1999.

8. K. L. Clarkson and P. W. Shor. Algorithms for diametral pairs and convex hulls that are
optimal, randomized, and incremental. In Proceedings of the Fourth Annual Symposium on
Computational Geometry (SoCG’88), pages 12–17, 1988.

9. Matthew J. Katz, Klara Kedem, and Michael Segal. Improved algorithms for placing undesir-
able facilities. In Proceedings of the 11th Canadian Conference on Computational Geometry
(CCCG’99), pages 65–67, 1999.

10. S. K. Kim and C.-S. Shin. Placing two disks in a convex polygon. Information Processing
Letters, 73, 2000.

11. N. Megiddo. Applying parallel computation algorithms to the design of serial algorithms.
Journal of the ACM, 30:852–865, 1983.

12. F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-Verlag, New York,
1985.

