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Abstract

The diameter of a set P of n points in Rd is the maximum Euclidean distance between
any two points in P . If P is the vertex set of a 3-dimensional convex polytope, and if
the combinatorial structure of this polytope is given, we prove that, in the worst case,
deciding whether the diameter of P is smaller than 1 requires Ω(n log n) time in the
algebraic computation tree model. It shows that the O(n log n) time algorithm of Ramos
for computing the diameter of a point set in R3 is optimal for computing the diameter of
a 3-polytope. We also give a linear time reduction from Hopcroft’s problem of finding an
incidence between points and lines in R2 to the diameter problem for a point set in R7.

Keywords: Computational geometry; Lower bound; Diameter; Convex polytope; Hopcroft’s
problem

1 Introduction

The diameter problem for a set P of n points in Rd is to compute the largest distance between
any two points in P . In other words, if we denote by d(·, ·) the Euclidean distance in Rd,
it consists in finding diam(P ) = max{d(x, y) | x, y ∈ P}. It is a fundamental problem in
computational geometry and has been studied extensively [2, 5, 12, 13, 16, 17]. If P ⊂ R2,
then its diameter can be computed in O(n log n) time [16], which is optimal in the algebraic
computation tree model [1, 3]. The three dimensional case remained open for a much longer
time, but eventually Clarkson and Shor [7] designed an optimal O(n log n) time randomized
algorithm to compute the diameter of a set of n points in R3, and Ramos [17] found a
deterministic counterpart.

The Ω(n log n) lower bound for computing the diameter of P ⊂ R2 can be broken if P is
given as the sequence of the vertices of a convex polygon sorted along its boundary, in which
case an O(n) time algorithm is known [16]. Our main result (Theorem 7) is to show that
the same speed-up cannot be achieved in R3, when P is the vertex set of a convex polytope,
and the combinatorial structure of this polytope is given. In the worst case Ω(n log n) time is
required to compute the diameter of P . More precisely, we show that deciding whether the
diameter of P is smaller than 1 requires an algebraic computation tree with depth Ω(n log n).
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We prove this result by applying Ben-Or’s technique [1, 3, 16] to a suitable family of polytopes.
Our lower bound implies that the algorithm by Ramos [17] is optimal for computing the
diameter of a 3-polytope.

Similar problems of closing the gap between an Ω(n) lower bound and an O(n log n) upper
bound have been studied recently. Chazelle et al. [6] mention that it is possible to compute
the convex hull of two 3-polytopes in linear time, and it is not known whether the convex hull
of a subset of the n vertices of a convex polytope can be computed in O(n) time. On the
other hand, given the Delaunay triangulation of a set P of n points in R2 (which is a special
case of 3-dimensional convex hulls [8]), it is possible to compute the Delaunay triangulation of
any subset of P in O(n) time.

Hopcroft posed the following well known problem [10]. Given n lines and n points in R2,
decide whether there is a point contained in a line. Matoušek [14] gave an O

(
n4/32O(log∗ n)

)
time algorithm for this problem, but no O(n4/3) time algorithm has been found so far. The
only lower bound known for an algebraic computation tree is Ω(n log n), and Erickson gave
an Ω(n4/3) lower bound in a weaker model of computation [10]. Thus, finding a reduction
from Hopcroft’s problem to any other problem suggests that this problem is difficult to solve
in o(n4/3) time. Erickson gave several such reductions to various geometric problems [9],
for instance he showed that ray shooting in polyhedral terrains and halfspace emptiness
checking in R5 are harder than Hopcroft’s problem. In this paper, we show that the same
is true for the diameter problem in R7. More precisely, we show that there is a linear time
reduction from Hopcroft’s problem to the diameter problem in R7 using a real random access
machine [16] (real-RAM). We give a similar reduction to the red-blue diameter problem in
R6. Our approach is based on a linearization argument. Using the lifting transformation and
advanced data structures for ray shooting [15], the diameter of a set of n points in Rd can be
computed in O(n2−2/(dd/2e+1) logO(1) n) time, which is O(n1.6 logO(1) n)) for d = 7.

2 Notation and preliminaries

We work in a fixed dimension d, so d is an integer such that d = O(1). When d = 3, we use
an orthonormal coordinate frame Oxyz of R3. For all a, b ∈ Rd, we denote by d(a, b) the
Euclidean distance between a and b. For any set P of n points in Rd, the diameter of P , that
we denote by diam(P ), is given by

diam(P ) = max
a,b∈P

d(a, b).

Given two finite point sets A,B ⊂ Rd, where the points in A are called the red points and the
points in B are called the blue points, the red-blue diameter of (A,B) is

diam(A,B) = max
a∈A,b∈B

d(a, b).

If a ∈ Rd and B is a non-empty subset of Rd, we denote by d(a,B) the distance between a
and B, that is

d(a,B) = inf
b∈B

d(a, b).

The convex hull of A ⊂ Rd is denoted by CH(A). For all a ∈ Rd and r > 0, we denote by
B(a, r) the open Euclidean ball with center a and radius r. We denote by m(a, b) the midpoint
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of the line segment ab. We use the notation ‖ · ‖ for the L2 norm. In other words, for all
a, b ∈ Rd, we have ‖a− b‖ = d(a, b). We denote by 〈a, b〉 the inner product of a and b. We
use the notation ū = (u1, u2, . . . , um) to denote a sequence, and the concatenation of two
sequences is written with a coma: ((1, 2), (3, 4)) = (1, 2, 3, 4).

A 3-polytope is a 3-dimensional convex polytope. The combinatorial structure of a 3-
polytope P is the set of all inclusion relations between its vertices, edges and facets. In our
lower bound arguments, we assume that the combinatorial structure of P is given together
with the following information: the coordinates of the vertices of P and, for each facet f of P ,
the edges of f are given as a sequence ordered along the boundary of f .

2.1 Models of computation

The real-RAM model is the model of computation that is most commonly used to analyze
geometric algorithms [16]. It is a random access machine that can store a real number or an
integer in each memory cell. It can perform comparisons and arithmetic operations (+,−,×, /)
between real numbers or between integers at unit costs. However, it is not allowed to convert
between real variables and integer variables (for instance through a floor function). Integer
values can be used as memory addresses to perform indirect addressing, but real numbers
cannot serve this purpose. By default, a real-RAM can only use the real and integer constants
0 and 1, but we will also consider a more powerful model of real-RAM that can use arbitrary
real constants as operands.

Before we prove our lower bound under the real-RAM model, we will first prove it under
the algebraic computation tree [3] model. We will only use the algebraic computation tree
model for decision problems, so following Ben-Or [1], we use the following definition where
leaves are labeled by YES or NO. We denote by x = (x1, x2, . . . , xn) ∈ Rn the input to
our problem. An algebraic computation tree T is a binary tree where each node is either a
computation node (a degree one node, with one son), a branching node (a degree two node,
with two sons), or a leaf. A computation node u is associated with an arithmetic operation
taken in {+,−,×, /,

√
·}. Each operand is either a real constant, an input number xi, or

a value obtained at a computation node that is an ancestor of u. At each branching node
v, we compare with 0 the value obtained at a computation node that is an ancestor of v;
each comparison can be taken in {>,>,=}. According to the result of this comparison, the
program branches to one son of v or the other. So, according to the value of the input point
x, the program follows a path in T that leads to a leaf labeled YES or NO. We say that T
decides the set W ⊂ Rn if we reach a leaf labeled YES for all x ∈ W , and we reach a leaf
labeled NO for all x /∈W .

Ben-Or proved the following result:

Theorem 1 (Ben-Or [1]) Any algebraic computation tree that decides W ⊂ Rn has depth
Ω(log(#W )− n), where #W is the number of connected components of W .

This lower bound can be extended to real-RAM’s that only take real numbers as input.
Indeed, suppose that a real-RAM with arbitrary real constants decides a set W ⊂ Rn. As
the input consists of n real numbers, this real-RAM can only perform indirect addressing to
memory cells at fixed (integer) memory addresses. The value stored in a fixed memory cell
can be used directly by an algebraic computation tree. (Only indirect addressing to a variable
address would be impossible to simulate with an algebraic computation tree.) Thus, all the
possible branching and algebraic operations of this real-RAM can be unfolded into an algebraic
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computation tree. Therefore, a lower bound on the depth of all algebraic computation trees
that decide W gives a lower bound on the worst case running time of any real-RAM with
arbitrary real constants that decides W .

3 Diameter of a 3-polytope

In this section, we show that computing the diameter of a 3-polytope requires Ω(n log n) time
in the algebraic computation tree model. Our approach is the following. We first construct
a family of 3-polytopes that have the same combinatorial structure, but do not all have the
same diameter. (In particular, the set of polytopes with diameter smaller than 1 has a large
number of connected components.) Then we apply Ben-Or’s technique [1, 3, 16].

We will use the inequalities

∀θ ∈
[
−π

2
,
π

2

]
,
θ2

4
6 1− cos θ 6

θ2

2
, (1)

with strict inequalities if θ 6= 0.
Let n > 0 be an integer. Let α and ϕ denote two real numbers such that 0 < α 6 1

4
and 0 < ϕ 6 1

4 . Both are to be thought of as small enough, to be chosen later. Then we
define ψ = ϕ

n , γ = α
n , t =

(
1− cos

(
1
2ψ

))
/

(
1 + cos

(
1
2ψ

))
and r = 1− t. The length r has the

following property (see Figure 1): if e, f , g and h are four points such that |ef | = |eg| = r,
∠feg = ∠feh = 1

2ψ and ∠efh = π
2 , then the midpoint m(g, h) is at distance 1 from e.

h

r

1
2
ψ

r t t

1

e
g

f

m(g, h)

Figure 1: Geometric interpretation of r and t.

Now we define three sets of points in R3. (See Figure 2.) For all i ∈ {−n,−n+ 1, . . . , n},
we define

ai =

 1
2(1− cos(iγ))
0
1
2 sin(iγ)


and we denote A = {ai | − n 6 i 6 n}. For all i ∈ {−n,−n+ 1, . . . , n− 1} and s ∈ {−1, 1},
let

csi =

 r cos
((
i+ 1

2

)
ψ

)
r sin

((
i+ 1

2

)
ψ

)
1
2sα
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Figure 2: The sets A,B(β̄) and C when n = 3 and β̄ ∈ [−α, α]2n−1.

and C = {csi | − n 6 i < n, s ∈ {−1, 1}}. Now for a parameter β ∈ R and for all
j ∈ {−n+ 1,−n+ 2, . . . , n− 1}, we define

bj(β) =

 cos(jψ)− 1
2(1− cosβ)

sin(jψ)
1
2 sin(β)


For all β̄ = (β−n+1, β−n+2, . . . , βn−1) ∈ R2n−1, we define B(β̄) = {bj(βj) | −n+1 6 j 6 n−1}.

The following lemma shows that, for α small enough and β̄ ∈ [−α, α]2n−1, the graph of
CH(A ∪B(β̄) ∪ C) does not depend on the angle sequence β̄.

Lemma 2 Assume that α < 2t cos(1
2ψ) and β̄ ∈ [−α, α]2n−1. Then the graph of CH(A ∪

B(β̄)∪C) is the the union of the graph of CH(A∪C) and the set of the edges connecting each
bj(βj) to the points c1j−1, c

−1
j−1, c

1
j and c−1

j . (See Figure 3.)

Proof: Let Hj be the vertical plane containing {c1j , c
−1
j } and orthogonal to (O,m(c1j , c

−1
j )).

(See Figure 4.) Let H ′
j be the vertical plane containing the points c1j−1, c

−1
j−1, c

1
j and c−1

j . Let
H+ (resp. H−) be the horizontal plane with equation z = 1

2α (resp. z = −1
2α). Let ∆j be

the interior of the polytope defined by the planes Hj−1,Hj ,H
′
j ,H

+ and H−.
By elementary trigonometry (see also Figure 1), we can show that

bj(0) ∈ ∆j ,
d(bj(0),H+) = d(bj(0),H−) = 1

2α,
d(bj(0),H ′

j) > t, and
d(bj(0),Hj−1) = d(bj(0),Hj) = t cos(1

2ψ).
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−3

c1−3

b0b−2(β−2)

b2(β2)

a−3

c−1
−2

c−1
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1
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a0

a−1

a−2

Figure 3: This figure shows CH(A ∪ B(β̄) ∪ C). The graph of CH (A ∪ C) is obtained by
removing all the vertices in B(β̄) and the adjacent edges.

Our assumption that 1
2α < t cos(1

2ψ) implies that B(bj(0), 1
2α) ⊂ ∆j . For all j, we have

βj ∈ [−α, α], so bj(βj) ∈ B(bj(0), 1
2α) and thus bj(βj) ∈ ∆j . Therefore, the only facet of

CH(A∪C) that is visible from bj(βj) is the facet c−1
j−1c

1
j−1c

1
jc

−1
j , and no point in B(β̄)\{bj(βj)}

is visible from bj(βj); the result follows.

In order to apply Ben-Or’s bound to our problem, we need to show that the special case we
consider has a large number of connected components. Intuitively, the following lemma shows
that for a given index i, the point bi(β) produces 2n connected components when β ∈ [−α, α].
Figure 5 shows the simple case where i = 0, and thus A and bi(β) = b0(β) are cocircular.
Lemma 3 gives the generalization to all values of i.

Lemma 3 Assume that ϕ 6 1
4n and j ∈ {−n + 1,−n + 2, . . . , n − 1}. Then the set

{bj(β) | β ∈ [−α, α] and diam(A, {bj(β)}) < 1} has at least 2n connected components.

Proof: Let us first compute d2(ai, bj(β)). By developing the sum of squares and factoring,
we obtain

d2(ai, bj(β)) =
1
4

(2− (cos(iγ) + cosβ)− 2 cos(jψ))2 + sin2(jψ)

+
1
4
(sin(iγ)− sinβ)2

= 1 +
1
4
(cos(iγ) + cosβ)2 + cos2(jψ)− (cos(iγ) + cosβ)

−2 cos(jψ) + (cos(iγ) + cosβ) cos(jψ) + sin2(jψ)

+
1
4
(sin(iγ)− sinβ)2

=
5
2

+
1
2
(cos(iγ) cosβ − sin(iγ) sinβ)− (cos(iγ) + cosβ)

−2 cos(jψ) + (cos(iγ) + cosβ) cos(jψ),
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Figure 4: The shaded area is ∆j , seen from above.
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a3
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a1

z

α

b0(β)

a−2

γ
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1
2

a−1

x

1
2

Figure 5: Lemma 3 when n = 3 and i = 0. The diameter is equal to 1 when β is a multiple of
γ, and otherwise it is smaller than 1.

and thus

d2(ai, bj(β)) = 1− 1
2
(1− cos(iγ + β)) + (1− cos(jψ))(2− cos(iγ)− cosβ). (2)

The result follows directly from the following two claims:

Claim 1. Let i ∈ {−n,−n+ 1, . . . , n} and β = −iγ. Then d(ai, bj(β)) > 1.
This is obvious from Equation (2) since the second term evaluates to 0.

Claim 2. Let k ∈ {−n+ 1,−n+ 2, . . . , n} and β = (k − 1
2)γ. Then

diam(A, {bj(β)}) < 1.
Let i ∈ {−n,−n+ 1, . . . , n}. Let ν = β + iγ. From Equation (2) we get

d2(ai, bj(β)) = 1− 1
2
(1− cos ν) + (1− cos(jψ))(2− cos(iγ)− cosβ).

Note that |ν| 6 2α 6 1
2 < π

2 . Moreover, by the choice of β, we have |ν| > 1
2γ. Thus

Equation (1) yields 1− cos ν > 1
4ν

2 > 1
16γ

2. Besides we have 1− cos(jψ) 6 1− cosϕ < 1
2ϕ

2
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and 2− cos(iγ)− cos(β) < 1
2(iγ)2 + 1

2β
2 6 α2. These inequalities imply that d2(ai, bj(β)) <

1− 1
32γ

2 + 1
2ϕ

2α2. Remember that α = nγ, so we obtain d2(ai, bj(β)) < 1 + 1
2α

2
(
ϕ2 − 1

16n2

)
.

As ϕ 6 1
4n , we conclude that d(ai, bj(β)) < 1.

Lemma 3 only involves pairs of points in A × B(β). The following lemma shows that
A×B(β̄) contains a diametral pair of A∪B(β̄)∪C. It will allow us to apply Lemma 3 to the
problem of finding the diameter of A ∪B(β̄) ∪ C.

Lemma 4 Assume that α 6 1
2 t. Then for any β̄ ∈ [−α, α]2n−1, we have

diam(A ∪B(β̄) ∪ C) = diam(A,B(β̄)).

Proof: Clearly we have d(ai, aj) 6 α 6 1
4 and d(csi , c

s′
i′ ) 6 2rϕ+ α 6 3

4 . In the same way,
d(bj(β), bj′(β′)) 6 2ϕ+ α 6 3

4 and d(ai, c
s
j) 6 r + α. Similarly we have

d(bj(β), csi ) 6 d(bj(0), bj(β)) + d(bj(0), csi ) 6
α

2
+ 2rϕ+

α

2
+ t 6 2rϕ+

3
2
t.

By our assumption that ϕ 6 1
4 and by Equation (1), we have t 6 1

128 so d(bj(β), csi ) 6 3
4 . On

the other hand, d(ai, bj(β)) > d(a0, bj(0))− d(a0, ai)− d(bj(0), bj(β)) > 1− 1
2α−

1
2α = 1− α.

The result follows from the facts that 1− α > 3
4 and 1− α > r + α.

In order to be able to apply lemmas 2, 3 and 4, we need to find values of α ∈ (0, 1
4 ]

and ϕ ∈ (0, 1
4 ] such that the following three conditions hold simultaneously: α < 2t cos(1

2ψ),
ϕ 6 1

4n and α 6 1
2 t. We choose ϕ = ϕn = 1

4n and small enough α = 2−10n−4 satisfying these
conditions.

From now on, we assume that α = αn and ϕ = ϕn have been chosen as above. We define
the sequences ā = (a−n, a−n+1, . . . , an) and
c̄ = (c−1

−n, . . . , c
−1
n−1, c

1
−n, . . . , c

1
n−1). For any β̄ ∈ R2n−1 we also define the sequence b̄(β̄) =

(b−n+1(β−n+1), b−n+2(β−n+2), . . . , bn−1(βn−1)). We define the set of sequences

Sn = {(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1} ⊂ R24n.

Thus, each element of Sn is a sequence of 8n points in R3.

Lemma 5 The set Sn can be decided by an algebraic computation tree with depth O(n).

Proof: Given three sequences ū, v̄ and w̄ of respectively 2n+ 1, 2n− 1 and 4n points in R3,
we want to check in linear time if there exists β̄ ∈ [−α, α]2n−1 such that (ū, v̄, w̄) = (ā, b̄(β̄), c̄).
For fixed n, the coordinates of ā and c̄ are real constants. As this computation tree is
allowed to use real constants (even if their expression uses trigonometric functions cos and
sin), it is trivial to check that ū = ā and w̄ = c̄. Now it remains to check that there exists
β̄ ∈ [−α, α]2n−1 such that v̄ = b̄(β̄). We denote v̄ = (v−n+1, v−n+2, . . . , vn−1). For each integer
j ∈ {−n+ 1,−n+ 2, . . . , n− 1}, we only need to check that vj belongs to:

– the sphere of center (cos(jψ)− 1
2 , sin(jψ), 0) and radius 1

2 ,

– the plane y = sin(jψ),

– and the halfspace x > cos(jψ)− 1
2 + cos(α).

This can obviously be decided by a computation tree of linear depth.
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Now we consider the following subset of Sn:

En =
{
(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1 and diam(A ∪B(β̄) ∪ C) < 1

}
.

Lemma 6 An algebraic computation tree that, given a sequence s̄ of 8n points in R3, decides
whether s̄ ∈ En, has depth Ω(n log n).

Proof: By Lemma 4 we have

En =
{
(ā, b̄(β̄), c̄) | β̄ ∈ [−α, α]2n−1 and diam(A,B(β̄)) < 1

}
,

and thus

En = {ā} ×
n−1∏

j=−n+1

{bj(β) | β ∈ [−α, α] and diam(A, {bj(β)}) < 1} × {c̄}.

By Lemma 3 we know that En has at least (2n)2n−1 connected components. We conclude by
applying Ben-Or’s bound [1, 3, 16] to En.

The graph of a 3-polytope is planar, so a 3-polytope with n vertices has O(n) edges and facets.
Therefore, we can encode the coordinates of its n vertices using 3n real numbers, and we
can encode its combinatorial structure and the ordering of the edges of each facet around its
boundary using O(n) integers—for instance, using a doubly-connected edge-list [8].

In the theorem below, we assume that the input is given using this encoding.

Theorem 7 Assume that an algebraic computation tree Tn decides whether the diameter of a
3-polytope with n vertices is smaller than 1. Then Tn has depth Ω(n log n).

Proof: We denote by (s̄, ḡ) the input of the tree T8n, where s̄ = (s1, s2, . . . , s8n) denotes a
sequence of 8n points in R3, and ḡ encodes the graph of the convex hull of S = {s1, s2, . . . , s8n}.
By Lemma 5, there is an algebraic computation tree Un with depth O(n) that decides whether
s̄ ∈ Sn. By plugging Un to each accepting leaf of T8n, we obtain an algebraic computation
tree T ′

8n that accepts 3-polytopes (s̄, ḡ) such that s̄ ∈ Sn and diam(S) < 1. In other words,
T ′

8n accepts 3-polytopes (s̄, ḡ) such that s̄ ∈ En. By Lemma 2, all 3-polytopes (s̄, ḡ) accepted
by T ′

8n have the same graph ḡ = ḡ0. Therefore, substituting the input part ḡ with ḡ0 in this
tree gives an algebraic computation tree T ′′

8n that decides whether s̄ ∈ En. If we denote by dn

the depth of Tn, then the depth of T ′′
8n is d8n +O(n). On the other hand, Lemma 6 tells us

that T ′′
8n has depth Ω(n log n). It follows that dn = Ω(n log n).

The lower bound we obtained on the depth of algebraic computation trees computing the
diameter of a 3-polytope can be turned into a lower bound for real-RAM’s using arbitrary
constants. We achieve it by considering a non-uniform model of real-RAM, that is, a sequence
of real-RAM’s with arbitrary constants, the n-th machine solving the problem for inputs
made of n points. This model is of course stronger than the uniform real-RAM model. If
a non-uniform real-RAM computes the diameter of a 3-polytope in time t(n), then it can
be turned into a non-uniform real-RAM deciding (En)n∈N in time t(n) +O(n), because the
input part that encodes the combinatorial structure is fixed, and thus it can be seen as a
set of constants of the real-RAM. As explained in the last paragraph of Section 2.1, since
this problem has only real inputs, the lower bound obtained for algebraic computation trees
through Lemma 6 holds in the real-RAM model as well.
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Theorem 8 Assume that a real-RAM with arbitrary real constants decides whether the
diameter of a 3-polytope with n vertices is smaller than 1. Then it has worst case running
time Ω(n log n).

Ramos gave an O(n log n) upper bound on the complexity of computing the diameter of a
3-polytope in the real-RAM model [17]. His algorithm can also be turned into an algebraic
computation tree of depth O(n log n). So theorems 7 and 8 imply that the complexity of
computing the diameter of a 3-polytope is Θ(n log n), both in the algebraic computation tree
model and in the real-RAM model.

4 Diameter is harder than Hopcroft’s problem

Hopcroft posed the following problem: given a set L of lines and a set P of points in R2,
decide whether there is a line ` ∈ L and a point p ∈ P such that p ∈ `. We will show that the
diameter problem for a point set in R7 is harder than Hopcroft’s problem. We first show a
reduction to the red-blue diameter problem. In the following two propositions, we deal with a
real-RAM that can use the constant

√
2. We will explain at the end of this section how we

can avoid using this constant.

Proposition 9 There is a linear-time reduction from Hopcroft’s problem to the red-blue
diameter problem in R6 using a real-RAM that uses the constant

√
2.

Proof: Let (a1, . . . , an, b1, . . . , bp) be an instance of Hopcroft’s problem. For all i, the point
ai = (ui, vi, wi) corresponds to the line with equation uix+viy+wi = 0. Each point bi is given
by its coordinates (xi, yi) ∈ R2. We denote ci = (xi, yi, zi = 1). So our instance of Hopcroft’s
problem has a positive answer if and only if 〈ai, cj〉 = 0 for some i and j.

We denote a′i = ai/‖ai‖ and c′i = ci/‖ci‖. We define the function θ : R3 → R6 by

θ(x, y, z) =
1

x2 + y2 + z2
(x2, y2, z2,

√
2xy,

√
2xz,

√
2yz).

Now let the points given by fi = θ(ai) be the red points, and let the points gi = θ(ci)
be the blue points. Notice that ‖fi‖2 = ‖ai‖4/‖ai‖4 = 1, and ‖gi‖2 = 1. It implies that
‖fi − gj‖2 = ‖fi‖2 + ‖gj‖2− 2〈fi, gj〉 = 2− 2‖ai‖−2‖cj‖−2(uixj + viyj +wizj)2 = 2− 2〈a′i, c′j〉2.
Thus, the red-blue diameter of the 6 dimensional point sets {fi | 1 6 i 6 n} and {gi | 1 6 i 6 p}
is 2 if and only if our instance of Hopcroft’s problem is positive.

A simple modification of the proof of Proposition 9 gives a reduction to the diameter
problem in R7.

Proposition 10 There is a linear-time reduction from Hopcroft’s problem to the diameter
problem in R7 using a real-RAM that uses the constant

√
2.

Proof: With the notations from the previous proposition, we define f̂i = (fi, 1) ∈ R7 and
ĝj = (gj ,−1) ∈ R7. One have ‖f̂i−f̂j‖2 = ‖fi−fj‖2 6 (‖fi‖+‖fj‖)2 6 4, and ‖ĝi−ĝj‖2 6 4 in
the same way. But ‖f̂i−ĝj‖2 = ‖fi−gj‖2+4 > 4. Thus, the diameter of {f̂1, . . . , f̂n, ĝ1, . . . , ĝp}
is realized by a couple of points of the form (f̂i, ĝj).
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In propositions 9 and 10, we allowed the use of the constant
√

2 by the real-RAM machine.
It can be avoided at the expense of increasing the dimension if we replace our function
θ : R3 → R6 in the proof of Proposition 9 by the function θ′ : R3 → R9 defined as follows:

θ′(x, y, z) =
1

x2 + y2 + z2
(x2, y2, z2, xy, xy, xz, xz, yz, yz).

Thus we obtain the following result:

Proposition 11 Using a real-RAM, there are linear-time reductions from Hopcroft’s problem
to the red-blue diameter problem in R9 and to the diameter problem in R10.

5 Concluding remarks

It would be interesting to extend our lower bound for 3-polytopes to the following randomized
setting. A randomized computation tree (RCT) is a collection of algebraic computation trees
{Ti}i∈I together a probability vector {pi}i∈I such that pi > 0 and

∑
i pi = 1. The depth of

this RCT is the maximum depth of {Ti}i∈I . The RCT model requires that there exists a
constant ε < 1/2 such that, for each input, the error probability is bounded above by ε. Given
n points in R2, a RCT of depth Ω(n log n) is needed to decide if the diameter of this point set
is smaller than 1: it follows from the standard reduction from diameter to set disjointness [16]
and the Ω(n log n) lower bound on set disjointness for RCTs proved by Grigoriev [11]. Of
course this lower bound holds in higher dimension, and is optimal in R2 and R3. Is it possible
to obtain the same randomized lower bound in R3 when the combinatorial structure of the
convex hull is given? Our lower bound argument does not apply: in the RCT model, the
logarithm of the number of connected components of a set does not necessarily provide a
lower bound on the depth of a RCT that decides this set [4]. Even a lower bound on the
less powerful d-RDT model (randomized algebraic decision trees with test nodes of maximum
degree bounded by a constant d) would be interesting.

As we noted earlier, our lower bound for computing the diameter of a convex polytope
leaves no room for improvement. Our results on the diameter for point sets in higher dimension,
however, are not known to be optimal. First there is no lower bound other than Ω(n log n)
for Hopcroft’s problem in the algebraic computation tree model. Second, even assuming that
Hopcroft’s problem cannot be solved in o(n4/3) time, our result is not entirely satisfactory
because the best known algorithm for the red-blue diameter problem [15] in R6 runs in
O(n1.5 logO(1) n) time. On the other hand, the red-blue diameter in R4 can be computed in
O(n4/3 logO(1) n) time, so it would be interesting to prove that this problem is harder than
Hopcroft’s problem. (Similarly, Erickson [9] asked whether the diameter in R4 is harder than
halfspace emptiness checking in R5.)

Another intriguing question is the following. In propositions 9 and 10 we find reductions
from Hopcroft’s problem to diameter problems using a real-RAM that can use the constant√

2. In proposition 11, we use a real-RAM without constant, and we obtain reductions to
diameter problems in 3 dimensions higher. Is it possible to find such a reduction without
increasing the dimension?
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